Author(s):
Anita Kumari, Renu Khedar, Taruna Pandey, R V Singh, Nighat Fahmi
Email(s):
anitasigger@yahoo.in , nighat.fahmi@gmail.com
DOI:
10.52711/0974-360X.2023.00764
Address:
Anita Kumari, Renu Khedar, Taruna Pandey, R V Singh, Nighat Fahmi*
Department of Chemistry, University of Rajasthan, Jaipur, India – 302004.
*Corresponding Author
Published In:
Volume - 16,
Issue - 10,
Year - 2023
ABSTRACT:
A green, straightforward, microwave-assisted method of synthesizing organogermanium complexes derived from 1-acetylferrocenehydrazinecarboxamide (AcSCZH) and 1-acetylferrocenehydrazinecarbothioamide (AcTSCZH) have been reported. For structural elucidation, elemental analysis, melting point measurements, and a mix of UV, IR, and 1H NMR spectroscopy methods were used to describe all of the produced compounds. According to physicochemical and spectroscopic investigations, the ligands are coupled to the Ge (IV) by azomethine nitrogen and the thiolicsulphur atom/enoloic oxygen atom. A trigonal-bipyramidal structure has been assigned to 1:1 germanium (IV) complexes, while an octahedral structure has been assigned to 1:2 germanium (IV) complexes. Antibacterial and antifungal activity of the compounds were investigated in vitro against human pathogenic bacteria and fungi respectively. The complexes' DNA cleavage abilities and antioxidant properties were also investigated. The present research work highlights the current progress in the development of germanium complexes as novel anti-oxidant and DNA cleavage agents.
Cite this article:
Anita Kumari, Renu Khedar, Taruna Pandey, R V Singh, Nighat Fahmi. Microwave assisted Facile Green Synthesis, Characterization and Biological Evaluation of Organogermanium (IV) complexes. Research Journal of Pharmacy and Technology 2023; 16(10):4703-0. doi: 10.52711/0974-360X.2023.00764
Cite(Electronic):
Anita Kumari, Renu Khedar, Taruna Pandey, R V Singh, Nighat Fahmi. Microwave assisted Facile Green Synthesis, Characterization and Biological Evaluation of Organogermanium (IV) complexes. Research Journal of Pharmacy and Technology 2023; 16(10):4703-0. doi: 10.52711/0974-360X.2023.00764 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-10-34
REFERENCES:
1. Jadhav A A. Devale R P. Review on Microwave, The General purpose in Microwave Assisted Synthesis for Green Chemistry. Asian Journal of Research in Chemistry. 2022; 15(2):182-5. DOI: 10.52711/0974-4150.2022.00031.
2. Jayalakshmi P M. Sheeba Jasmin T S. Jose M. Microwave Assisted Synthesis and Antibacterial Evaluation of 1, 3, 4-Thiadiazole Derivatives. Research Journal of Pharmacy and Technology. 2021; 14(10):5293-6.DOI:10.52711/0974-360X.2021.00923.
3. Navale V A. Mokle S S. Vibhute A Y. Karamunge KG. KhansoleS V. Junne S B. Vibhute Y B. Microwave-Assisted Synthesis and Antibacterial Activity of Some New Flavones and 1, 5-Benzothiazepines.Asian Journal of Research in Chemistry. 2009; 2(4): 472-475.
4. Canton-Díaz A M. Munoz-Flores BM.MoggioI. Arias E.Turlakov G. Angel-Mosqueda, CD. Ramirez-Montes PI. Jimenez-Perez VM. Molecular structures, DFT studies and their photophysical properties in solution and solid state. Microwave-assisted multi component synthesis of organotin bearing Schiff bases. Journal of Molecular Structure. 2019;1180:642-650. DOI: https://doi.org/10.1016/j.molstruc.2018.12.039.
5. Hanif M. Hassan M. Rafiq M.Abbas Q. Ishaq A. Shahzadi S. Seo S Y. Saleem M. Microwave-assisted synthesis, in vivo anti-inflammatory and in vitro anti-oxidant activities and molecular docking study of new substituted schiff base derivatives. Pharmaceutical Chemistry Journal. 2018;52:424-437. DOI: https://doi.org/10.1007/s11094-018-1835-0.
6. AnastasP T.WarnerJ C. Green Chemistry: Theory and Practice, Oxford University Press, New York. 1998. p.30.
7. Tapabashi N O. Taha N I. El-Subeyhi M. Design Microwave Assisted Synthesis of Some Schiff Bases Derivatives of Congo Red and Conventional Preparation of Their Structurally Reversed Analogous Compounds. International Journal of Organic Chemistry. 2021; 11: 35-45. DOI: https://doi.org/10.4236/ijoc.2021.111004.
8. Sathe P S. Pete U D, Bendre S R. Synthesis, Characterization and Investigation of Anti-Oxidant Activity of Hydrazide–hydrazone Derivatives of 2-(2-Isopropyl-5-methyl phenoxy) Acetohydrazide, Asian Journal of research in chemistry.2018; 11(3):533-538.DOI: 10.5958/0974-4150.2018.00095.0
9. El-Wahaba H A. El-Fattahb M A. El-alfya H M Z. Owdaa M E. Linc L. Hamdya I.Synthesis and characterisation of sulphonamide (Schiff base) ligand and its copper metal complex and their efficiency in polyurethane varnish as flame retardant and antimicrobial surface coating additives.Progress in Organic Coatings. 2020; 142: 105577. DOI: https://doi.org/10.1016/j.porgcoat.2020.105577.
10. Al-Hiyari B A. Shakya A K. Naik R R. Bardaweel S. Microwave-Assisted Synthesis of Schiff Bases of Isoniazid and Evaluation of Their Anti-Proliferative and Antibacterial Activities. Molbank. 2021; 1: M1189. DOI:https://doi.org/ 10.3390/M1189.
11. Antony R. Arun T. Manickam S T D. A review on applications of chitosan-based Schiff bases.International Journal of Biological Macromolecules. 2019;129:615-633. DOI:https://doi.org/10.1016/j.ijbiomac.2019.02.047.
12. Manjuraj T. Krishnamurthy G. Bodke D Y. Naik H S B. Shafeeulla M. Co(II), Ni(II) and Cu(II) complexes of new Mannich base of of N'-(1H-benzimidazol-1-ylmethyl) Pyridine-4-Carbohydrazide: Spectral, XRD, Molecular Docking, Antioxidant and Antimicrobial Studies. Asian Journal of Research in Chemistry. 2017; 10(4): 470-476. DOI: 10.5958/0974-4150.2017.00076.1
13. Zianna A. Geromichalos G D. Pekou A. Hatzidimitriou A G. Coutouli-Argyropoulou E. Lalia-Kantouri M. Pantazaki A A. Psomas G. A palladium(II) complex with the Schiff base 4-chloro-2-(nethyliminomethyl)-phenol: synthesis, structural characterization, and in vitro and in silico biological activity studies.Journal of Inorganic Biochemistry. 2019; 199: 110792-110806. DOI:https://doi.org/10.1016/j.jinorgbio.2019.110792.
14. Wu D. GuoL. Li S J. Synthesis, structural characterization and anti-breast cancer activity evaluation of three new Schiff base metal (II) complexes and their nanoparticles. Journal of Molecular Structure.2020;1199:126938. DOI:https://doi.org/10.1016/j.molstruc.2019. 126938.
15. Iwan A. Schab-Balcerzak E. Grucela-Zajac M. Skorka L. Structural characterization, absorption and photoluminescence study of symmetrical azomethines with long aliphatic chains. Journal of Molecular Structure. 2014; 1058:130-135. DOI:https://doi.org/10.1016/j. molstruc.2013.10.067.
16. Zhang J. Xu L. Wong W Y. Energy materials based onmetal Schiff base complexes,Coordination Chemistry Reviews. 2018; 355: 180-198. DOI:https://doi.org/10.1016/j.ccr.2017.08.007.
17. Sharbati M T. Rad M N S. Behrouz S. Gharavi A. Emami F.Near infrared organic light-emitting diodes based on acceptor–donor–acceptor (ADA) using novel conjugated isatin Schiff bases. Journal of Luminescence. 2011; 131: 553-558. DOI:https://doi.org/10.1016/ j.jlumin.2010.10.016.
18. García-López M C. Muñoz-Flores B M. Jiménez-PérezV M. Moggio I. Arias E. Chan-Navarro R. Santillan R. Synthesis and photophysical characterization of organotin compounds derived from Schiff bases for organic light emitting diodes. Dyes and Pigments. 2014;106:188-196. DOI:https://doi.org/10.1016/j.dyepig.2014.02.021.
19. Bhumannavar V M. Patil P S. Gummagol N B. Structure Characterization, Spectroscopic investigation and Nonlinear Optical Study using Density Functional Theory of (E)-1-(4-Chlorophenyl)-3-(4-methylphenyl) prop-2-en-1-one. Asian Journal of Research in Chemistry. 2022; 15(2):121-8. DOI: 10.52711/0974-4150.2022.00019
20. Arroudj S. Bouchouit M. Bouchouit K. Bouraiou A. Messaadia L. Kulyk B. Figa V. Bouacida S. Sofiani Z. Taboukhat S. Synthesis, spectral, optical properties and theoretical calculations on schiff bases ligands containing o-tolidine. Optical Materials. 2016; 56: 116-120. https://doi.org/10.1016/j.optmat.2015.12.046.
21. Jeevadason A W. Murugavel K K. Neelakantan M A. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renewable and Sustainable Energy Reviews. 2014; 36: 220-227. DOI:https://doi.org/10.1016/j.rser.2014.04.060.
22. Ahamad M N. Iman K. Raza M K. Kumar M. Ansari A. Ahmad M. Shahid M. Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorganic Chemistry. 2020; 95: 103561. DOI:https://doi.org/10.1016/j.bioorg.2019.103561.
23. Aslan H G.Akkoç S. Kökbudak Z. Anticancer activities of various new metal complexes prepared from a Schiff base on A549 cell line. Inorganic Chemistry Communications. 2020;111:107645. DOI:https://doi.org/10.1016/j.inoche.2019.107645.
24. Vamsikrishna N. DaravathS. GanjiN. Pasha N.synthesis, structural characterization, DNA interaction, antibacterial and cytotoxicity studies of bivalent transition metal complexes of 6-aminobenzothiazole Schiff base. Inorganic Chemistry Communications. 2020; 113: 107767. DOI:https://doi.org/10.1016/j.inoche.2020. 107767.
25. Albobaledi Z. Esfahani M H. Behzad M. Abbasi A. Mixed ligand Cu(II) complexes of an unsymmetrical Schiff base ligand and N donorheterocyclic co-ligands: investigation of the effect of co-ligand on the antibacterial properties. Inorganica Chimica Acta. 2020; 499: 119185. DOI:https://doi.org/10.1016/j.ica.2019.119185.
26. Vivekanand D B, Mruthyunjayaswamy B H M. Synthesis characterization and antimicrobial activity studies of some transition metal complexes derived from 3-chloro-6-methoxy-N’-((2-thioxo-1, 2-dihydroquinolin-3-yl) methylene)benzo[b] thiophene-2-carboxyhydrazide. Asian Journal of Research in Chemistry. 2013; 6(1):35-46.
27. Nartop D. Özkan E H. Gündem M. Çeker S. Ağar G. Öğütcü H. Sarı N.Synthesis, antimicrobial and antimutagenic effects of novel polymeric Schiff bases including indol. Journal of Molecular Structure. 2019; 1195: 877-882. DOI:https://doi.org/10.1016/j.molstruc.2019.06.042.
28. Satheesh C E. Kumar P R. Shivakumar N. Lingaraju K. Krishna P M. Rajanaika H. Hosamani A. Synthesis, structural characterization, antimicrobial and DNA binding studies of homoleptic zinc and copper complexes of NO Schiff bases derived from homoveratrylamine.InorganicaChimicaActa. 2019; 495: 118929. DOI:https://doi.org/10.1016/j.ica.2019.05.028.
29. Joshi R. Kumari A. Singh K. Mishra H. Pokharia S. Triorganotin (IV) complexes of Schiff base derived from 1,2,4-triazole moiety: synthesis, spectroscopic investigation, DFT studies, antifungal activity and molecular docking studies. Journal of Molecular Structure. 2020; 1206: 1-15. DOI:https://doi.org/10.1016/j.molstruc.2019.127639
30. Anita. Ghanghas P. Poonia K. Synthesis, Characterization, UTI and Antibacterial Activity of Schiff Base, (E)-2-(decan-2-ylidene) hydrazine-1-carboxamide Co2+, Mn2+ and Fe3+Metal Complexes. Asian Journal of Research in Chemistry. 2022; 15(2):145-0. DOI: 10.52711/0974-4150.2022.00023
31. Muthuselvan P. David S T. Nair M S. Transition Metal Schiff base Complexes with N, S and O donors – Synthesis, Characterisation and Antimicrobial Studies. Asian Journal of Research in Chemistry. 2011; 4(8):1305-1310.
32. Süleymanoglu N. Ustabaş R.Unver Y. Alpaslan Y B. Direkel S. Karaman U.5-Phenyl thiophene amino phenol derivatives: synthesis, spectroscopic characterization, computational study and antimicrobial activity. Journal of Molecular Structure. 2019; 1182:36-46. DOI:https://doi.org/10.1016/j.molstruc.2019.01.005.
33. Alyaninezhad Z. Bekhradnia A. Feizi N. Arshadi S. Zibandeh M.A novel aluminum-sensitive fluorescent chemosensor based on 4-aminoantipyrine: an experimental and theoretical study. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy. 2019;212:32-41. DOI:https://doi.org/10.1016/j.saa.2018.12.035.
34. Singh A. Tom S. Trivedi D R. Aminophenol based colorimetric chemosensor for naked-eye detection of biologically important fluoride and acetate ions in organo-aqueous medium: effective and simple anion sensors. Journal of Photochemistry and Photobiology A: Chemistry. 2018; 353: 507-520.DOI: https://doi.org/10.1016/j.jphotochem.2017.12. 002.
35. Bai L. Tao F. Li L. Deng A. Yan C. Li G. Wang L.A simple turn-on fluorescent chemosensor based on Schiff base-terminated water-soluble polymer for selective detection of Al3+ in 100% aqueous solution. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy. 2019; 214: 436-444. DOI:https://doi.org/10. 1016/j.saa.2019.02.062.
36. Fahmi N. Shrivastava S. Meena R. Joshi S. C. Singh R V. Microwave assisted synthesis, spectroscopic characterization and biological aspects of some new chromium(iii) complexes derived from N⁁O donor Schiff bases, New Journal of Chemistry. 2013; 37: 1445-1453. DOI:(https://doi.org/10.1039/C3NJ40907D).
37. Bonaccorso C. Marzo T. Mendola D L. Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review. Pharmaceuticals. 2020; 13: 4-9. DOI:10.3390/ph13010004.
38. Li M X. Chen C L. Zhang D. Niu J Y. Ji B S. Mn(II), Co(II) and Zn(II) complexes with heterocyclic substituted thiosemicarbazones: synthesis, characterization, X-ray crystal structures and antitumor comparison. European Journal of Medicinal Chemistry. 2010; 45: 3169-3177. DOI: 10.1016/j.ejmech.2010.04.009.
39. Kluska M. Some Aspects of the Analysis of Biologically Active Organogermanium Substances.Critical Reviews in Analytical Chemistry. 2008; 38: 84-92.DOI:https://doi.org/10.1080/10408340701804459.
40. Vogel A I. A Textbook of Organic Quantitative Analysis, (Pearson Education Ltd.: Thames Polytechnique, London) 2004. p. 243.
41. Fahmi N. Sharma K. Singh R V. Palladium(II) and platinum(II) derivatives of benzothiazoline ligands: Synthesis, characterization, antimicrobial and antispermatogenic activity. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy. 2011; 78: 80.(https://doi.org/10.01016/j.saa.2010.08.076).
42. Singh R V. Yadav S.Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy. 2011; 78: 298. (DOI:https://doi.org/10.1016/j.saa.2010.10.010.)
43. Tweedy B G. Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology.1964; 55:910-918.
44. Ahmed S A. Ansari A Q. Waheed M A. Sayyed J A. Extraction and determination of antioxidant activity of Withania somnifera Dunal. European Journal of Experimental Biology. 2013;3:502-507.
45. Rahmani S E. Lahrech M Evaluation of the Antioxidant Activity of some Hydrazone Schiff’s bases bearing Benzotriazole Moiety. Research Journal of Pharmacy and Technology. 2018; 11(9):1-4.DOI: 10.5958/0974-360X.2018.00754.0
46. Swathi N. Subrahmanyam C V S. Satyanarayana K . Synthesis and Quantitative Structure-Antioxidant Activity Relationship Analysis of Thiazolidine-2,4-dione Analogues. Asian Journal of Research in Chemistry. 2015; 8(1): 21-26. DOI: 10.5958/0974-4150.2015.00005.X