Author(s):
Lubna Zeenat, Shalini Prajapati, Satyam Sangeet, Arshad Khan, Khushhali M Pandey
Email(s):
lubnazeenat919@gmail.com
DOI:
10.52711/0974-360X.2023.00762
Address:
Lubna Zeenat1*, Shalini Prajapati1, Satyam Sangeet2, Arshad Khan1, Khushhali M Pandey1
1Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India.
2Department of Chemistry, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 10,
Year - 2023
ABSTRACT:
Background: Staphylococcus aureus is a threat to human health, it colonizes one-third of the human population via skin or nose and deeper intrusions into tissues have catastrophic consequences. The bacterium secretes virulence proteins like CHIP and SCIN and extracellular adhesins like extracellular adherence (Eap) proteins. Eap and its functionally orphan homologs, EapH1 and EapH2; are a class of secreted proteins that inhibit neutrophil serine proteases such as neutrophil elastase (HNE) that is linked to tissue degradation in a variety of disease conditions including inflammatory disorders. Commercial drugs used against S.aureus such as Nafcillin, Pefloxacin, etc. have been known to have negative effects and are not recommended for children, the elderly, or pregnant women. Objective: The current research focuses on discovering phytochemicals found in Indian medicinal herbs that have been used as spices for ages and are already beneficial against a variety of illnesses and ailments to be used against Eap proteins. Method: Molecular docking;absorption, distribution, metabolism, excretion, toxicity (ADMET) analysis and Simulation were performed to see if these phytochemicals interact with the active site residues of Eap proteins and function as competitive inhibitors of NE and to know their drug like properties and gather information about the system dynamics. 19 phytochemicals were selected from receptor-ligand docking. The selected molecules were pharmacologically tested through Lipinski’s analysis; to know their ability for being formulated into drugs. ADMET analysis was carried out to define the biological characteristic of phytochemicals inside the living body. The phytochemicals with the best docking score and drug likeliness were analysed by Molecular Simulation to observe the fluctuation of participating and interacting amino acids with Eaph1 and Eaph2 respectively. Result: Among the nineteen phytochemicals that were chosen for docking only the best eleven interactions were chosen for ADMET analysis. The top hit phytochemicals for Eaph1 and Eaph2 were Curcumin and Eugenol respectively, which was well demonstrated by Molecular dynamic simulation. Conclusion: The present study has established the hypothesis that phytochemicals have a scope to replace commercial drugs against the Eap virulence system of Staphylococcus aureus
Cite this article:
Lubna Zeenat, Shalini Prajapati, Satyam Sangeet, Arshad Khan, Khushhali M Pandey. In-silico Screening of Potential Phytochemicals against Extracellular Adherence (Eap) Protein of Staphylococcus aureus from Indian Medicinal Plants. Research Journal of Pharmacy and Technology 2023; 16(10):4691-7. doi: 10.52711/0974-360X.2023.00762
Cite(Electronic):
Lubna Zeenat, Shalini Prajapati, Satyam Sangeet, Arshad Khan, Khushhali M Pandey. In-silico Screening of Potential Phytochemicals against Extracellular Adherence (Eap) Protein of Staphylococcus aureus from Indian Medicinal Plants. Research Journal of Pharmacy and Technology 2023; 16(10):4691-7. doi: 10.52711/0974-360X.2023.00762 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-10-32
REFERENCES:
1. Nadji, G.; Rémadi, J. P.; Coviaux, F.; Mirode, A. A.; Brahim, A.; Enriquez-Sarano, M.; Tribouilloy, C. Comparison of Clinical and Morphological Characteristics of Staphylococcus Aureus Endocarditis with Endocarditis Caused by Other Pathogens. Heart (British Cardiac Society). 2005; 91 (7): 932–937. https://doi.org/10.1136/HRT.2004.042648.
2. Olson, M. E.; Horswill, A. R. Staphylococcus Aureus Osteomyelitis: Bad to the Bone. Cell Host and Microbe. 2013, 13 (6): 629–631. https://doi.org/10.1016/j.chom.2013.05.015.
3. Dolin, H. H.; Papadimos, T. J.; Chen, X.; Pan, Z. K. Characterization of Pathogenic Sepsis Etiologies and Patient Profiles: A Novel Approach to Triage and Treatment. Microbiology Insights. 2019; 12: 117863611882508. https://doi.org/10.1177/1178636118825081.
4. Stryjewski, M. E.; Corey, G. R. Methicillin-Resistant Staphylococcus Aureus: An Evolving Pathogen. Clinical Infectious Diseases. 2014; 58 (SUPPL. 1): 10–19. https://doi.org/10.1093/cid/cit613.
5. Rooijakkers, S. H. M.; Ruyken, M.; van Roon, J.; van Kessel, K. P. M.; van Strijp, J. A. G.; van Wamel, W. J. B. Early Expression of SCIN and CHIPS Drives Instant Immune Evasion by Staphylococcus Aureus. Cellular Microbiology. 2006; 8 (8): 1282–1293. https://doi.org/10.1111/J.1462-5822.2006.00709.X.
6. De Haas, C. J. C.; Veldkamp, K. E.; Peschel, A.; Weerkamp, F.; Van Wamel, W. J. B.; Heezius, E. C. J. M.; Poppelier, M. J. J. G.; Van Kessel, K. P. M.; Van Strijp, J. A. G. Chemotaxis Inhibitory Protein of Staphylococcus Aureus, a Bacterial Antiinflammatory Agent. The Journal of Experimental Medicine. 2004; 199 (5): 687–695. https://doi.org/10.1084/JEM.20031636.
7. Sangeet, S.; Khan, A.; Prabha, S.; Pandey, K. M. Antibacterial Property of Biologically Synthesized Iron Nanoparticles Against <Emphasis Type="Italic">Staphylococcus Aureus</Emphasis>. 2022; 85–96. https://doi.org/10.1007/978-981-16-8341-1_7.
8. Geisbrecht, B. V.; Hamaoka, B. Y.; Perman, B.; Zemla, A.; Leahy, D. J. The Crystal Structures of EAP Domains from Staphylococcus Aureus Reveal an Unexpected Homology to Bacterial Superantigens. Journal of Biological Chemistry. 2005; 280 (17): 17243–17250. https://doi.org/10.1074/jbc.M412311200.
9. Stapels, D. A. C.; Ramyar, K. X.; Bischoff, M.; Von Köckritz-Blickwede, M.; Milder, F. J.; Ruyken, M.; Eisenbeis, J.; McWhorter, W. J.; Herrmann, M.; Van Kessel, K. P. M.; Geisbrecht, B. V.; Rooijakkers, S. H. M. Staphylococcus Aureus Secretes a Unique Class of Neutrophil Serine Protease Inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111 (36): 13187–13192. https://doi.org/10.1073/PNAS.1407616111.
10. Herdendorf, T. J.; Geisbrecht, B. V. Staphylococcus Aureus Evasion Proteins EapH1 and EapH2: Residue-Level Investigation of an Alternative Binding Motif for Human Neutrophil Elastase. Archives of Biochemistry and Biophysics. 2019; 676 (September): 108140. https://doi.org/10.1016/j.abb.2019.108140.
11. Herdendorf, T. J.; Geisbrecht, B. V. Investigation of Human Neutrophil Elastase Inhibition by Staphylococcus Aureus EapH1: The Key Role Played by Arginine 89. Biochemistry. 2018; 57 (50): 6888–6896. https://doi.org/10.1021/ACS.BIOCHEM.8B01134.
12. Sakoulas, G.; Okumura, C. Y.; Thienphrapa, W.; Olson, J.; Nonejuie, P.; Dam, Q.; Dhand, A.; Pogliano, J.; Yeaman, M. R.; Hensler, M. E.; Bayer, A. S.; Nizet, V. Nafcillin Enhances Innate Immune-Mediated Killing of Methicillin-Resistant Staphylococcus Aureus. 2014; 92 (2): 139–149.
13. Wright, J.; Paauw, D. S. Complications of Antibiotic Therapy. Medical Clinics of North America. 2013; 97 (4): 667–679. https://doi.org/10.1016/j.mcna.2013.02.006.
14. Joshi, B.; Sah, G. P.; Basnet, B. B.; Bhatt, M. R.; Sharma, D.; Subedi, K.; Pandey, J.; Malla, R. Phytochemical Extraction and Antimicrobial Properties of Different Medicinal Plants :Ocimum Sanctum ( Tulsi ), Eugenia Caryophyllata ( Clove ), Achyranthes Bidentata ( Datiwan ) and Azadirachta Indica ( Neem ). J Microbiol Antimicrob. 2011; 3 (1): 1–7.
15. Padmanabhan, P.; Jangle, S. N. Evaluation of in Vitro Anti-Inflammatory Activity of Herbal Preparation, a Combination of Four Medicinal Plants. International Journal of Basic and Applied Medical Sciences. 2012; 2 (1): 109–116.
16. Saroj, B. K.; Tripathi, S.; Khan, M. Y. To Study Anti-Inflammatory and Analgesic Activity of DesmostachiaBipinnata (l.) Stapf on Experimental Animals .Asian Journal of Pharmacy and Technology. 2018; 8 (4): 211. https://doi.org/10.5958/2231-5713.2018.00034.X.
17. Kuttan, R.; Bhanumathy, P.; Nirmala, K.; George, M. C. Potential Anticancer Activity of Turmeric (Curcuma Longa). Cancer Letters. 1985; 29 (2): 197–202. https://doi.org/10.1016/0304-3835(85)90159-4.
18. Pandey, G.; Madhuri, S. Some Medicinal Plants as Natural Anticancer Agents. Pharmacognosy Reviews. 2009; 3 (6): 259–263.
19. Wadkar, K.; Magdum, C.; Wadkar, K. A.; Magdum, C. S.; Patil, S. S.; Naikwade, N. S. Anti-Diabetic Potential and Indian Medicinal Plants. J Herb Med Toxicol Standardization of Marketed Herbal Formulations View Project Anti-Diabetic Potential and Indian Medicinal Plants. Journal of Herbal Medicine and Toxicology. 2008; 2 (1): 45–50.
20. Patil, R. N.; Patil, R. Y.; Ahirwar, B.; Ahirwar, D. Evaluation of Antidiabetic and Related Actions of Some Indian Medicinal Plants in Diabetic Rats. Asian Pacific Journal of Tropical Medicine. 2011; 4 (1): 20–23. https://doi.org/10.1016/S1995-7645(11)60025-4.
21. Nimbekar, T.; Jain, A.; Mohanty, P. K. Phytochemical Screening and In-Vitro Antidiabetic Activity of Extracts of Some Indian Medicinal Plants. Research Journal of Pharmacy and Technology. 2021; 14 (4): 2026–2030. https://doi.org/10.52711/0974-360X.2021.00359.
22. Sahu, M.; Kumar, V.; Joshi, V. Indian Medicinal Plants with Antidiabetic Potential: An Overview. Research Journal of Pharmacy and Technology. 2021; 14 (4): 2328–2335. https://doi.org/10.52711/0974-360X.2021.00411.
23. Sharmila, K. J.; Kanimozhi, L.; Shanmuga Priya, J.; Vidhya, G. V.; Caroline Jeba, R.; Kowsalya, R. Anti-Diabetic Potential of Indian Medicinal Plants with Garcinia Kola and Syzygium Cumini. Research Journal of Pharmacy and Technology. 2021; 14 (11): 5696–5702. https://doi.org/10.52711/0974-360X.2021.00990.
24. Asian Journal of Research in Pharmaceutical Sciences. https://ajpsonline.com/HTMLPaper.aspx?Journal=Asian Journal of Research in Pharmaceutical Sciences;PID=2014-4-4-9 (accessed 2022-02-18).
25. Kumar, S. S.; Bhosle, D.; Janghel, A.; Deo, S.; Raut, P.; Verma, C.; Agrawal, M.; Amit, N.; Sharma, M.; Giri, T.; Tripathi, D. K.; Ajazuddin; Alexander, A. Indian Medicinal Plants Used for Treatment of Rheumatoid Arthritis. Research Journal of Pharmacy and Technology. 2015; 8 (5): 597–610. https://doi.org/10.5958/0974-360X.2015.00099.2.
26. Naidu, N.; Kumar, G. S.; Sivakrishna, K.; Anjinaik, K.; Kumar, L. P.; Sneha, G. Anti Microbial and Antioxidant Evolution of Aqueous Extract of Terminalia Chebula Using Disc Diffusion, H2O2 Scavenging Methods . Asian Journal of Research in Pharmaceutical Science. 2017; 7 (2): 112. https://doi.org/10.5958/2231-5659.2017.00017.0.
27. Research Journal of Pharmacognosy and Phytochemistry. https://rjpponline.org/HTMLPaper.aspx?Journal=Research Journal of Pharmacognosy and Phytochemistry;PID=2011-3-2-9 (accessed 2022-02-18).
28. Nistane, N. T.; Chauriya, C. B.; Bangade, R. Medicinal Plants, against Dental Associated Problems. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019; 11 (1): 10–14. https://doi.org/10.5958/0975-4377.2019.00002.8.
29. Borkar, V. S.; Kumaran, S. K.; Kumar, S. KL. Medicinal Plants with Potential Wound Healing Activity. Research Journal of Pharmacognosy and Phytochemistry. 2015; 7 (2): 116–123. https://doi.org/10.5958/0975-4385.2015.00020.5.
30. Mickymaray, S.; Al Aboody, M. S.; Rath, P. K.; Annamalai, P.; Nooruddin, T. Screening and Antibacterial Efficacy of Selected Indian Medicinal Plants. Asian Pacific Journal of Tropical Biomedicine. 2016; 6 (3): 185–191. https://doi.org/10.1016/j.apjtb.2015.12.005.
31. Srivastava, A. K.; Srivastava, S. K.; Syamsundar, K. V. Bud and Leaf Essential Oil Composition of Syzygium Aromaticum from India and Madagascar. Flavour and Fragrance Journal. 2005; 20 (1): 51–53. https://doi.org/10.1002/ffj.1364.
32. Arivoli, S.; Tennyson, S.; Divya, S.; Rani, S.; Marin, G. GC-MS Analysis of Bioactive Compounds of Curcuma Longa Linnaeus (Zingiberaceae) Rhizome Extract. ~ 49 ~ Journal of Pharmacognosy and Phytochemistry. 2019, 8 (6): 49–52.
33. O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical Toolbox. Journal of Cheminformatics. 2011; 3 (10): https://doi.org/10.1186/1758-2946-3-33.
34. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry. 2004; 25 (13): 1605–1612. https://doi.org/10.1002/JCC.20084.
35. Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Patch Dock and SymmDock: Servers for Rigid and Symmetric. Docking. https://doi.org/10.1093/nar/gki481.
36. Laskowski, R. A.; Swindells, M. B. LigPlot+: Multiple LigandÀProtein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011; 51: 2778–2786. https://doi.org/10.1021/ci200227u.
37. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Engineering, Design and Selection. 1995; 8 (2): 127–134. https://doi.org/10.1093/PROTEIN/8.2.127.
38. Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discovery Today: Technologies. 2004, 1 (4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007.
39. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports. 2017; 7 (March): 1–13. https://doi.org/10.1038/srep42717.
40. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, Flexible, and Free. Journal of Computational Chemistry. 2005; 26 (16): 1701–1718. https://doi.org/10.1002/JCC.20291.
41. Casado, F.; Mudunuru, S. A.; Nasr, R. A Case of Hypokalemia Possibly Induced by Nafcillin. Antibiotics. 2018; 7(4): 108. https://doi.org/10.3390/ANTIBIOTICS7040108.
42. Herdendorf, T. J.; Geisbrecht, B. V. Investigation of Human Neutrophil Elastase Inhibition by Staphylococcus Aureus EapH1: The Key Role Played by Arginine 89. Biochemistry. 2018; 57 (50): 6888–6896. https://doi.org/10.1021/acs.biochem.8b01134.
43. George, P. Concerns Regarding the Safety and Toxicity of Medicinal Plants-An Overview Concerns Regarding the Safety and Toxicity of Medicinal Plants-A n Overview.