Author(s): Erindyah Retno Wikantyasning, Uswatun Hasanah


DOI: 10.52711/0974-360X.2023.00758   

Address: Erindyah Retno Wikantyasning*, Uswatun Hasanah
Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. A. Yani No. 157, Pabelan, Kartasura, Sukoharjo, 57169.
*Corresponding Author

Published In:   Volume - 16,      Issue - 10,     Year - 2023

Pathogenic bacteria cause severe cases in human health, especially pathology in infectious diseases. The incidence of bacterial resistance to antibiotics also seriously impacts human health, so a detection method that is more sensitive, fast, and easy is needed. Responsive polymers are biocompatible, non-thrombogenic, firm, elastic, flexible, and easy to shape, and have become the choice for colorimetric sensors against bacteria. This narrative review aims to determine the sensitivity and selectivity of responsive polymers as a sensor system against pathogenic bacteria. The compilation of this narrative review was traced through the PubMed database using the keyword "(sensitive polymers OR responsive polymers) AND (colorimetric detection OR colorimetry) AND (bacteria OR pathogen)". The inclusion criteria used were primary literature with the publication year 2010-2020. From these results, nine published articles that met the criteria for review were determined. Based on the analysis results, the responsive polymer has a sensitivity with a LOD range of 1-108 CFU/mL and high selectivity in colorimetric sensors to detect pathogenic bacteria.

Cite this article:
Erindyah Retno Wikantyasning, Uswatun Hasanah. Review on Sensitivity and Selectivity of Colorimetric Sensor Based on Responsive Polymer against Pathogenic Bacteria. Research Journal of Pharmacy and Technology 2023; 16(10):4663-0. doi: 10.52711/0974-360X.2023.00758

Erindyah Retno Wikantyasning, Uswatun Hasanah. Review on Sensitivity and Selectivity of Colorimetric Sensor Based on Responsive Polymer against Pathogenic Bacteria. Research Journal of Pharmacy and Technology 2023; 16(10):4663-0. doi: 10.52711/0974-360X.2023.00758   Available on:

1.    Aljanaby AAJ., Aljanaby IAJ. Profile of Antimicrobial Resistance of Aerobic Pathogenic Bacteria isolated from Different Clinical Infections in Al-Kufa Central Hospital –Iraq During period from 2015 to 2017. Res J Pharm Technol. 2017; 10: 3264–70.
2.    Khushboo K., Saloni B., Singh RK. A Briefing of a Global Crisis: Antibiotic Resistance. Asian Journal of Research in Pharmaceutical Sciences. 2020; 10: 264–72.
3.    Sreeja MK., Gowrishankar NL., Adisha S., et al. Antibiotic resistance-reasons and the most common resistant pathogens – A review. Res J Pharm Technol. 2017; 10: 1886–90.
4.    Centers for Disease Control U. Antibiotic Resistance Threats in the United States, 2019 n.d.
5.    Shukla I., Suneetha V. Biosensors: Growth and Market Scenario. Res J Pharm Technol. 2017; 10: 3573–9.
6.    Rakesh P., Pramod P., Sujit P. Biosensors: Current tool for Medication and Diagnosis. Asian Journal of Pharmaceutical Research. 2019; 9: 27–34.
7.    Patil LB., Patil SS., Nitalikar MM., et al. A Review on-Novel Approaches in Nanorobotics. Asian Journal of Pharmaceutical Research. 2016; 6: 217–24.
8.    Raj V., Vijayan AN., Joseph K. Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens Biosensing Res. 2015; 5: 33–6.
9.    Wikantyasning ER., Mutmainnah M., Cholisoh Z., et al. Preparation of hydrogel nanocomposite containing gold nanoparticles with unique swelling/deswelling properties. Rasayan Journal of Chemistry. 2019; 12: 1857–63.
10.    Gupta NP., Damodharan N. pH - responsive polymers and its application in drug delivery system and pharmaceutical field. Res J Pharm Technol. 2019;12:944–58.
11.    Reglero Ruiz J., Sanjuán A., Vallejos S., et al. Smart Polymers in Micro and Nano Sensory Devices. Chemosensors. 2018; 6: 12.
12.    Pattanashetti NA., Heggannavar GB., Kariduraganavar MY. Smart Biopolymers and their Biomedical Applications. Procedia Manuf. 2017; 12:263–79.
13.    Choe A., Yeom J., Shanker R., et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater 2018;10:912–22.
14.    Xu J., Luo S., Shi W., et al. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir. 2006; 22: 989–97.
15.    Islam MR., Serpe MJ. Label-free detection of low protein concentration in solution using a novel colorimetric assay. Biosens Bioelectron. 2013; 49: 133–8.
16.    Tang N., Mu L., Qu H., et al. Smartphone-Enabled Colorimetric Trinitrotoluene Detection Using Amine-Trapped Polydimethylsiloxane Membranes. ACS Appl Mater Interfaces. 2017; 9: 14445–52.
17.    Robby AI., Park SY. Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria. Anal Chim Acta 2019;1082:152–64.
18.    Gupta NP., Damodharan N. pH - Responsive Polymers and its Application in Drug Delivery System and Pharmaceutical Field. Res J Pharm Technol. 2019;12:944–58.
19.    Mutalabisin MF., Chatterjee B., Jaffri JM. pH Responsive Polymers in Drug Delivery. Res J Pharm Technol. 2018;11:5115–22.
20.    Pietsch C., Hoogenboom R., Schubert US. PMMA based soluble polymeric temperature sensors based on UCST transition and solvatochromic dyes. Polym Chem. 2010;1:1005–8.
21.    Yi J., Wu P., Li G., et al. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Microchimica Acta. 2019;186.
22.    Ye Y., Lv M., Zhang X., et al. Colorimetric determination of copper(ii) ions using gold nanoparticles as a probe. RSC Adv. 2015;5:102311–7.
23.    Qu F., Li NB., Luo HQ. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir. 2013;29:1199–205.
24.    Das S., Chatterjee DP., Ghosh R., et al. Water soluble polythiophenes: Preparation and applications. RSC Adv. 2015:20160–77.
25.    Cao Y., Wang Z., Zhang S., et al. Synergetic regulation of CO2 and light for controllable inversion of Pickering emulsions. Mater Chem Front. 2017;1:2136–42.
26.    Park DH., Hong J., Park IS., et al. A Colorimetric hydrocarbon sensor employing a swelling-induced mechanochromic polydiacetylene. Adv Funct Mater. 2014; 24: 5186–93.
27.    De Oliveira T V., Soares NDFF., De Andrade NJ., et al. Application of PCDA/SPH/CHO/Lysine vesicles to detect pathogenic bacteria in chicken. Food Chem. 2015;172:428–32.
28.    Lan M., Wu J., Liu W., et al. Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J Am Chem Soc. 2012; 134: 6685–94.
29.    Zhang Y., Rochefort D. Fast and effective paper based sensor for self-diagnosis of bacterial vaginosis. Anal Chim Acta. 2013; 800: 87–94.
30.    Wu JH., Wang CH., Ma YD., et al. A nitrocellulose membrane-based integrated microfluidic system for bacterial detection utilizing magnetic-composite membrane microdevices and bacteria-specific aptamers. Lab Chip. 2018; 18:1633–40.
31.    Ren W., Ballou DR., FitzGerald R., et al. Plasmonic enhancement in lateral flow sensors for improved sensing of E. coli O157:H7. Biosens Bioelectron. 2019; 126: 324–31.
32.    Burel C., Teolis A., Alsayed A., et al. Plasmonic Elastic Capsules as Colorimetric Reversible pH-Microsensors. Small. 2020;16:1–9.
33.    Alaqad K., Saleh TA. Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications towards Drugs. J Environ Anal Toxicol. 2016; 6.
34.    Ahmed S., Bui MPN., Abbas A. Paper-based chemical and biological sensors: Engineering aspects. Biosens Bioelectron. 2016; 77: 249–63.
35.    Saudagar RB., Mandlik KT. A Review on Gold Nanoparticles. Asian Journal of Pharmaceutical Research. 2016; 6: 45–8.
36.    Arora AK. Metal/ Mixed Metal Oxides and Their Applications as Sensors: A Review. Asian Journal of Research in Chemistry. 2018; 11: 497–504.
37.    Chen X., Zhou G., Peng X., et al. Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem Soc Rev. 2012; 41:4610–30.
38.    Chaiet L., Wolf FJ. The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Arch Biochem Biophys. 1964; 106: 1–5.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available