Author(s): Sumithira George, Mugundhan Duraisamy, Rajesh Venugopalan, Kalaiselvan. D

Email(s): georgesumithira@gmail.com , geemugu2@gmail.com

DOI: 10.52711/0974-360X.2023.00756   

Address: Sumithira George1*, Mugundhan Duraisamy1, Rajesh Venugopalan2, Kalaiselvan. D2
1,2Department of Pharmacology, The Erode College of Pharmacy, Perundurai Main Road, Veppampalayam, Erode - 638112, Tamilnadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 10,     Year - 2023


ABSTRACT:
The use of herbal formulation for treatment of diabetes as well as its associated complications such as diabetic neuropathy has received great attention in the field of drug discovery. The aim of the present study was to investigate the neuroprotective effect of Mallotus philippensis fruit extract in a rat model of diabetic neuropathy. Diabetes was induced by a single i.p injection of STZ 45mg/kg. Neuropathic pain markers like hyperalgesia, allodynia and spontaneous pain were assessed before and after the treatment of M.P fruit extract at a high dose of 500mg/kg. During the study period blood glucose, HbA1C, body weight, food and water intake, were determined. Liver and kidney weight, along with histopathology of sciatic nerve, antioxidant parameters and oxidative stress marker were observed after 8th week of treatment. Our results demonstrated that treatment of Mallotus philippensis fruit extract significantly increased body weight, lowered the level of blood glucose, HbA1c, food and water intake. The Mallotus philippensis fruit extract significantly relieved thermal hyperalgesia, allodynia and spontaneous pain by increasing the antioxidant parameters such as SOD, CAT and GSH and by decreasing the oxidative stress level (LPO). Histological evaluation revealed that treatment of Mallotus philippensis extract reduced the axonal degeneration and improving the regeneration of sciatic nerve fiber. Thus, our present findings highlighted the beneficial effect of Mallotus philippensis fruit extract on neuroprotection possibly through its antihyperglycemia, antiglycation and antioxidant activity.


Cite this article:
Sumithira George, Mugundhan Duraisamy, Rajesh Venugopalan, Kalaiselvan. D. Neuroprotective Effect of Mallotus philippensis Extract in Streptozotocin Induced Diabetic Neuropathy in Rats. Research Journal of Pharmacy and Technology 2023; 16(10):4649-7. doi: 10.52711/0974-360X.2023.00756

Cite(Electronic):
Sumithira George, Mugundhan Duraisamy, Rajesh Venugopalan, Kalaiselvan. D. Neuroprotective Effect of Mallotus philippensis Extract in Streptozotocin Induced Diabetic Neuropathy in Rats. Research Journal of Pharmacy and Technology 2023; 16(10):4649-7. doi: 10.52711/0974-360X.2023.00756   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-10-26


REFERENCE:
1.    IDF Diabetes Atlas 2021.10th edition. International Diabetes Federation 2021. https://diabetesatlas.org/
2.    Diabetes. World health organization 2021. https://www.who.int/news-room/fact-sheets/detail/diabetes
3.    Diabetic neuropathy. Mayoclinic 2020. https://www.mayoclinic.org/diseases-conditions/diabetic-neuropathy/symptoms-causes /syc-20371580#:~:text=Diabetic%20neuropathy%20is%20a %20type, in%20your%20legs%20and%20feet.
4.    Malarkodi velraj, Jasmine shiney P, Biplab paul, Rashmi S, Nivethitha. Biosynthesis of silver nanoparticles from the ethanolic extract fruits of mallotus philippensis. Research J. Pharm. and Tech. 2017; 10(1):21-5. https://doi:10.5958/0974-360X.2017.00006.3
5.    Tripathi IP, Poonam Chaudhary, Poonam Pandey. Mallotus philippensis: A Miracle stick. World Journal of Pharmaceutical Research 2017; 6(7):678-687. https://doi:10.20959/wjpr20177-8816.
6.    Seema surendran, Vijayalakshmi Krishna moorthy. Effect of ethanolic extracts of cyperus rotundus on biochemical parameters of diabetic cataract induced wister albino rats. J Pharm Bioallied Sci.2015; 7(4): 289-292. https://doi:10.4103/0975-7406.168028
7.    Robbins MJ, Sharp RA, Slonim AE etal. Protection against Streptozotocin-induced diabetes by superoxide dismutase. Diabetologia. 1980; 18,55-58. https://doi.org/10.1007/BF01228303
8.    Ranjithkumar R , Prathab Balaji S, Balaji B, Ramesh RV, Ramanathan M. Standardized Aqueous Tribulus terristris (nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: role of oxidative stress and inflammatory mediators. Phytother Res. 2013; 27(11):1646-57. https://doi:10.1002/ptr.4915
9.    Sumithira G, Muhammed Shabeer A, Danish TK, Ashma A, Krishnamoorthy B. Antidiabetic activity of alcoholic extract of mallotus philippensis muell.arg.in streptozotocin induced diabetic rats. International Journal of Research in Pharmacology and Pharmacotherapeutics. 2020; 9(2):1666-176. https://ijrpp.com/ijrpp/article/view/32
10.    Muhammed shakkeel KV, Anjan Kumar, Veeresh babu D, Narayana swamy VB. Pharmacological evaluation of trichilia connaroides bark for analgesic and anti-inflammatory activity in  experimental animal models. Asian J. Pharm. Res. 2015; 5(3):138-144. https://doi:10.59587/2231-5691.2015.00021.0
11.    Sullivan KA, Hayes JM, Wiggin TD, Backus C, Su Oh S, Lentz SI, Brosius F 3rd, Feldman EL. Mouse models of diabetic neuropathy. Neurobiol Dis. 2007; 28(3):276-85. https://doi:10.1016/j.n.nbd.2007.07.022
12.    Malviya KG, Shivhare UD, Preeti srivastav, Shivhare SC. Evaluation of analgesic potential of cyathocline lyrata cass plant in rats by using tail flick and hot plate method. Asian J. Pharm. Res. 2013; 3(2):82-85. https://asianjpr.com/AbstractView.aspx?PID=2013-3-2-6
13.    Balamurgan gunasekaran, Muralidharan P. Antinociceptive effect of abutilon indicum linn leaf extract. Research J.Pharm. and Tech. 2009; 2(3):544-547. https://rjptonline.org/AbstractView.aspx?PID=2009-2-3-70
14.    Basavraj P, Nitin M. Antinociceptive activity of Tulsi amrit (A Polyherbal Formulation) in selective pain induced models in rats. Res.J.Pharmacology and Pharmacodynamics. 2017; 9(4):173-177. https://doi:10.5958/2321-5836.2017.00029.5  
15.    Sumitha A, Dhanasekaran R, Archana A, Sridevi S A, Thamizharasan S, Brethis C S. Phullanthus seeds methanolic extract:in vivo evaluation of analgesic activity. Research Journal of Pharmacy and Technology. 2022; 15(2): 713-6. https://doi:10.52711/0974-360X.2002.00118
16.    Manpreet kaur, Harinder kaur. Analgesic effects of fruits of silybum marianum L. Gaertn. Research J.Pharm. and Tech. 2010; 3(1): 92-94. https://rjptonline.org/AbstractView.aspx?PID=2010-3-1-9
17.    Luiz AP, Moura JD, Meotti FC. Antinociceptive action of ethanolic extract obtained from roots of Humiriantheraampla Miers. J Ethnopharmacol. 2007; 114:355–363. https://doi:10.1016/j.jep.2007.08.016
18.    Bharath CL, Bandenawaz ramadurg. Antidiabetic activity of phragmites karka (Retz) in alloxan induced diabetic rats. Research J. Pharmacology and Pharmacodynamics. 2013; 5(6): 371-375.
19.    Kavi priya S, Thamizhiniyan V, Subramanian S. Antidiabetic potential of Ficus bengalensis fruit extract studied in alloxan- induced experimental diabetes in rats. Research J.Pharmacology and Pharmacodynamics. 2013; 5(2):110-118.
20.    Pathade PA, Ahire YS, Bairagi A, Abhang DR. Antioxidants therapy in cognitive dysfunction associated with diabetes mellitus: An overview. Research J.Pharmacology and Pharmacodynamics. 2011; 3(2): 39-44. https://rjppd.org/AbstractView.aspx?PID=2011-3-2-11
21.    Subramanian S, Priya N, Thamizhiniyan V. Biochemical evaluation of hypoglycemic,hypolipidemic and antioxidant properties of lippia nodiflora leaves studied in alloxan-induced experimental diabetes in rats. Research J. Pharmacology and Pharmacodynamics. 2011;3(6): 299-304.
22.    Complication of Diabetes. Diabetes UK.  https://www.diabetes.org.uk/guide-to-diabetes/complications
23.    Dickenson AH, Matthews EA, Suzuki R. Neurobiology of neuropathic pain: mode of action of anticonvulsant. Europian Journal of Pain. 2002; 1(6):51-60.doi:10.1053/eujp.2001.0323
24.    Abdi S, Lee DH, Chung JM. The antiallodynic effects of amitriptyline, gabapentin and Lidocaine In Rat Model Of Neuropathic Pain, Anesh Analg. 1998; 87(6):1360-6. PMID:9842827.
25.    Diabetic neuropathy. Mayoclinic. https://www.mayoclinic.org/diseases-conditions/diabetic-neuropathy/symptoms-causes /syc-20371580
26.    Sumithira G, Shabeer M et al. Antidiabetic activity of alcoholic fruit extract of mallotus philippensis muell.arg. in streptozotocin induced diabetic rats. International Journal of Research in Pharmacology and Pharmacotherapeutics. 2020; 9(2):166-176. https://ijrpp.com/ijrpp/article/view/32
27.    Ali G, Subhan F, Abbas M et al. A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: validation using topical and systemic gabapentin. Naunyn- Schmiedeberg’s Arch Pharmacol. 2015; 388(11):1129-40. doi: 10.1007/s00210-015-1145-y
28.    Quintans JS, Antoniolli AR, Almeida JR, Santana-Filho VJ, Quintans-Júnior LJ. Natural products evaluated in neuropathic pain models–a systematic review. Basic Clin Pharmacol Toxicol. 2014; 114(6):442-50. doi:10.1111/bcpt.12178
29.    Sima AA, Zhang WX, Tze WJ, Tai J. Diabetic neuropathy in STZ induced diabetic rats and effect of allogenic islet cell transplantation: Morphonometric analysis. Diabetes. 1988; 37(8):1129-36. doi:10.2337/diab.37.8.1129
30.    Hussein JI, EI-Matty D, EI-Khayat ZA. Brain neurotransmitters in diabetic rats treated with COenzyme Q 10. Int. J. Pharmpaharm Eci. 2012; 4.554-6.
31.    Streptozotocin-induced rodent diabetic neuropathy models. Creative biolabs. https://www.creative-biolabs.com/drug-discovery/therapeutics/streptozotocin-induced-rodent-diabetic-neuropathy-models.html
32.    Bhaskar nagilla, Pratap reddy K. Neuroprotective and antinociceptive effect of curcumin in diabetic neuropathy in rats. International Journal of Pharmacy and Pharmaceutical Sciences. 2014; 6(5):131-138.
33.    Courtix C, Bardin M, Chantelauze J, Lavarenee J, Eschalier A. Study of the sensitivity of the diabetes induced pain model in rats to range of analgesics. Pain. 1994; 57(2):153-160. doi:10.1016/0304-3959(94)90218-6
34.    Calcutt NA, Jorge MC, Yaksh Tl, Chaplan TL. Tactile allodynia and formalin hyperalgesia in Streptozotocin diabetic rats: effect of insulin, aldose reductase inhibition and lidocaine. Pain. 1996; 68(2-3):293-9. doi: 10.1016/s0304-3959(96)03201-0
35.    Arora Mahesh kumar, Agarwal Anil, Baidya Dalim kumar,Khanna puneet. Pregabalin in acute and chronic pain. Journal of Anaesthesiology Clinical Pharmacology.2011; 27(3):307-14. doi:10.4103/0970-9185.83672
36.    Shakir D Alsharari, Salim S Rejaie A, Hatem M Abuohashish, Abdulaziz M Aleisa, Mihir Y Parmar, Ahmed MM. Ameliorative potential of morin in streptozotocin induced neuropathic pain in rats. Trop J Pharm Res. 2014; 13(9):1429. doi:10.4314/tjpr.v13i9.8
37.    Cohen K, Shinkazh N, Frank J, Israel I, Fellner C. Pharmacological treatment of diabetic peripheral neuropathy. P T. 2015; 40(6):372-88. PMID: 26045647; PMCID: PMC4450668
38.    Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev. 2016; 8(1):5-9. doi: 10.1007/s12551-015-0186-2
39.    John E. Hall PhD. Insulin, Glucagon and Diabetes Mellitus. Guyton: Hall Textbook of Medical Physiology; 2021.
40.    Insulin level. Pediatric critical care. 4th ed; 2011. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/insulin-level.
41.    Sumithira G, Ashma A, Akhilan D, Muhammed shabeer A, Kavya V. Evaluation of neuroprotective effect of Plecospermum spinosum trec in experimentally induced diabetic neuroprotective pain in rats. International Journal of Pharmaceutical and Healthcare Research. 2017,5(2):45-58
42.    Shah JK, Patel N. Effect of hesperidin on renal complication in experimentally induced renal damage in diabetic Sprague dawel rats. J Echobiotechnol. 2010; 2:35-10. https://updatepublishing.com/journal/index.php/jebt/article/view/28.
43.    Gandhi GR, Sasikumar P. Antidiabetic effect of Merremia emarginata Burm. F. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2(4):281-6. doi:10.1016/S2221-1691(12)60023-9.
44.    Calcutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia. 2004; 47(4):718–24. doi:10.1007/s00125-004-1354-2.
45.    Eleazu CO, Iroaganachi M, Okafor PN, Ijeh II, Eleazu KC. Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats. Int J Biomed Sci. 2013; 9(2):82-90.PMID: 23847458.
46.    Sugimoto K, Yagihashi S. Peripheral nerve pathology in rats with streptozotocin-induced insulinoma. Acta Neuropathologica. 1996; 91(6):616-23. doi: 10.1007/s004010050475.
47.    Karra A, Muller I, Janelle M, Ryals I, Eva LF, Douglas EW. Abnormal muscle spindle innervation and large-fiber neuropathy in diabetic mice. Diabetes. 2008; 57(6):1693–701. doi: 10.2337/db08-0022.
48.    Pittenger G, Mehrabyan A, Simmons K, Amandarice, Dublin C, Barlow P, et al. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord. 2005; 3(2):113–21. doi: 10.1089/met.2005.3.113.
49.    Sun W, Miao B, Wang XC, Duan JH, Ye X, et al. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons. Plos One. 2012; 7(6):e39647. doi:10.1371/journal.pone.0039647.
50.    Chen X, Levine JD. Altered temporal pattern of mechanically evoked Cfiber activity in a model of diabetic neuropathy in the rat. Neuroscience. 2003; 121(4): 1007–15. doi: 10.1016/s0306-4522(03)00486-x.
51.    Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem. 2004; 279: 29341–29350
52.    Fox A, Eastwood C, Gentry C, Manning D, Urban L. Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain.1999; 81: 307–316.
53.    Fuchs D, Birklein F, Reeh PW, Sauer SK. Sensitized peripheral nociception in experimental diabetes of the rat. Pain. 2010; 151(2):496-505. doi: 10.1016/j.pain.2010.08.010.
54.    Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, et al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci. 2007; 21;27(12):3305–16. doi; 10.1523/JNEUROSCI.4866-06.2007.
55.    Lopes LS, Pereira SS, Silva LL, et al. Antinociceptive effect of topiramate in models of acute pain and diabetic neuropathy in rodents. Life Sci. 2009; 16;84(3-4):105–10. doi:10.1016/j.Ifs.2008.11.005.
56.    Substance p anatogue blocks sp-induced facilitation of a spinal nociceptive reflex. Brain Research Bulletin. 1984; 13(4):597-600. https://doi.org/10.1016/0361-9230(84)90043-1.
57.    Allchorne AJ, Broom DC, Woolf CJ. Detection of Cold Pain, Cold Allodynia and Cold Hyperalgesia in Freely Behaving Rats. Molecular Pain. Jan 2005; 14;1:36. doi: 10.1186/1744-8069-1-36.
58.    Finnerup NB, Jensen TS. Mechanisms of disease: mechanism-based classification of neuropathic pain-a critical analysis. Nat Clin Pract Neurol. 2006;  2(2):107-15. doi: 10.1038/ncpneuro0118.
59.    Hasanein P, Riahi H. Antinociceptive and antihyperglycemic effects of Melissa officinalis essential oil in an experimental model of diabetes. Med Princ Pract. 2015; 24(1):47-52. doi: 10.1159/000368755.
60.    Stephen B. McMahon. Animal Models of Pain. FMedSci, FSB in Wall and Melzack's Textbook of Pain, 2013.
61.    McCall WD, Kimberly D. Tanner, Jon D. Levine. Formalin induces biphasic activity in C-fibers in the rat. Neuroscience Letters:1996; 12;208(1);45-8. doi: 10.1016/0304-3940(96)12552-0.
62.    Kumar N, Laferriere A.Yu Js, Leavitt A, Coderre TJ. Evidence that pregabalin reduces neuropathic pain by inhibiting the spinal release of glutamate. J Neurochem. 2010; 113(2):552-61. doi: 10.1111/j.1471-4159.2010.06625.x.
63.    Rauhala P, Andoh T, Chiueh C. Neuroprotective properties of nitric oxide and S-nitrosoglutathione. Toxicol. Appl. Pharmacol. 2005; 207, 91-5. doi: 10.1016/j.taap.2005.02.028.
64.    Jozefczak M, Remans T, Vangronsveld J, Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 2012; 13(3):3145–3175. doi. 10.3390/ijms 13033145.
65.    Meyer C, Stumvoll M, Nadkarni V, Dostou J, et al. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J. Clin. Invest. 1998; 102(3):619-24. doi: 10.1172/JCI2415.
66.    Sumithira G, Kavya V et.al., Evaluation of ethanolic extract of Ottelia alismoides(L.)PERS on the pain threshold response in STZ induced diabetic neuropathic pain model in rats. International Journal of Pharmaceuticals and Health Care Research. 2017; 5(4):103-123.
67.    Greene DA. Metabolic abnormalities in diabetic peripheral nerve: Relation to impaired function. Metabolism. 1983; 32:118–123. https://doi.org/10. 1016/S0026-0495(83)80024-9.
68.    Greene DA, Sima AF, Pfeifer MA, Albers JW. Diabetic neuropathy. Annu Rev Med. 1990; 41:303-17. doi: 10.1146/annurev.me.41.020190.001511.
69.    Preuss HG, Jarrell ST, Scheckenbach R, Lieberman S and Anderson RA: Comparative effects of chromium, vanadium and Gymnema sylvestre on sugar-induced blood pressure elevations in SHR. J Am Coll Nutr. 1998; 17(2):116-23. doi:10.1080/07315724.1998.10718736.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available