Author(s): S. K. Jain, S. K. Bharti, B.G.V.S. Jagan, Ajay K. Gupta


DOI: 10.52711/0974-360X.2023.00745   

Address: S. K. Jain*, S. K. Bharti, B.G.V.S. Jagan, Ajay K. Gupta
Drug Discovery and Research Laboratory, Department of Pharmacy (Formerly SLT Institute of Pharmaceutical Sciences), Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India, 495009.
*Corresponding Author

Published In:   Volume - 16,      Issue - 10,     Year - 2023

Histamine H3 receptor antagonist (H3RA) is a promising therapeutic for CNS disorders including attention deficit hyperactivity disorder [ADHD], sleep disorders, epilepsy, schizophrenia and obesity. 2,6-Disubstituted thiazolo[4,5-b]pyridines reported for their H3 receptor antagonistic activity were selected for three dimensional quantitative structure activity relationship (3D-QSAR) and pharmacophoric study in order to establish structure activity relationship quantitatively and essential structural features. In the current study, VLife Molecular Design Suite software (VlifeMDS) was used for QSAR and biophore studies. Pharmagist (web based server) was used for pharmacophoric study. Partial least square regression (PLSR) analysis showed r2= 0.7902, q2=0.6449 and pred_r2= 0.6650. In this model steric [S_138, S_826] and electrostatic descriptors [E_243, E_652] are involved to play an important role in eliciting biological activity. It showed good internal and external prediction. The contour plots provided further insight of the relationship between structural features of substituted thiazolo[4,5-b]pyridine derivatives and their activities which should be applicable to design newer potential H3R inhibitors. In addition with these studies, pharmacophoric models were also produced using Molsign (VLifeMDS) and Pharmagist (web based server). The identified pharmacophore features are two aromatic and two hydrogen bond acceptor with Molsign whereas common pharmacophoric features with Pharmagist are two aromatic, two hydrophobic and four hydrogen bond acceptors. The present work may be useful for further lead optimization and designing of potent H3 receptor antagonists.

Cite this article:
S. K. Jain, S. K. Bharti, B.G.V.S. Jagan, Ajay K. Gupta. 3D-QSAR and Pharmacophoric study on 2,6-Disubstituted Thiazolo [4,5-b] Pyridines as H3 Receptor Antagonists. Research Journal of Pharmacy and Technology 2023; 16(10):4575-2. doi: 10.52711/0974-360X.2023.00745

S. K. Jain, S. K. Bharti, B.G.V.S. Jagan, Ajay K. Gupta. 3D-QSAR and Pharmacophoric study on 2,6-Disubstituted Thiazolo [4,5-b] Pyridines as H3 Receptor Antagonists. Research Journal of Pharmacy and Technology 2023; 16(10):4575-2. doi: 10.52711/0974-360X.2023.00745   Available on:

1.    Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983; 302(5911): 832-837.
2.    Orr EL, Pace KR. The significance of mast cells as a source of histamine in the mouse brain. Journal of Neurochemistry. 1984; 42(3): 727-732.
3.    Schwartz JC, Arrang JM, Garbarg M, Korner M. Properties and roles of the three subclasses of histamine receptors in brain. The Journal of Experimental Biology. 1986;124: 203-224.
4.    Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas H. International Union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacological Reviews. 2015; 67(3): 601-655.
5.    Arrang JM. The histamine H(3) receptor: a target for new drugs. Annales Pharmaceutiques Françaises. 2003;61(3): 173-84.
6.    Arrang JM, Garbarg M, Lancelot JC, Lecomte JM,  Pollard H, Robba M, Schunack W, Schwartz JC. Highly potent and selective ligands for histamine H3-receptors. Nature. 1987; 327(6118): 117–123.
7.    Arrang JM, Garbarg M, Schwartz JC. Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience. 1985;15(2): 553–562.
8.    Arrang JM, Garbarg M, Schwartz JC. Autoinhibition of histamine synthesis mediated by presynaptic H3-receptors. Neuroscience. 1987; 23(1): 149–157.
9.    Arrang JM, Devaux B, Chodkiewicz JP, Schwartz JC. H3-receptors control histamine release in human brain. Journal of Neurochemistry. 1988;51(1): 105–108.
10.    Sadek B, Saad A, Sadeq A, Jalal F, Stark H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behavioural Brain Research. 2016;312: 415–430.
11.    Witkin JM, Nelson DL. Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacology and Therapeutics. 2004;103(1): 1–20.
12.    Esbenshade TA, Browma KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. British Journal of Pharmacology. 2008;154(6): 1166–1181.
13.    Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. British Journal of Pharmacology. 2012;167(7): 1398–1414.
14.    Harada C, Hirai T, Fujii Y, Harusawa S, Kurihara T, Kamei C. Intracerebroventricular administration of histamine H3 receptor antagonists decreases seizures in rat models of epilepsia. Methods and Findings in Experimental and Clinical Pharmacology. 2004;26(4): 263-270.
15.    Uma Devi P, Manocha A, Khanam R, Vohora D. Beneficial interaction between clobenpropit and pyridoxine in prevention of electroshock-induced seizures in mice: lack of histaminergic mechanisms. Human and Experimental Toxicology. 2011; 30(1): 84–88.
16.    Yokoyama H. The role of central histaminergic neuron system as an anticonvulsive mechanism in developing brain. Brain and Development. 2001;23(7): 542–547.
17.    Yokoyama H, Onodera K, Iinuma K, Watanabe T. Effect of thioper¬amide, a histamine H3 receptor antagonist, on electrically induced convulsions in mice. European Journal of Pharmacology. 1993; 234(1): 129–133.
18.    Mahmood D. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical and clinical perspective. International Journal of Health Sciences (Qassim). 2016;10(4): 543–554.
19.    Mahmood D, Akhtar M, Jahan K, Goswami D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. The Journal of Basic and Clinical Physiology and Pharmacology. 2016;27(5): 463–471.
20.    Vohora D, Bhowmik M. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse. Frontiers in Systems Neuroscience. 2012;6: 72.
21.    Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nature Reviews Neurology. 2018;14(11): 653–666.
22.    Shaik JB, Palaka BK, Penumala M, Kotapati KV, Devineni SR, Eadlapalli S, Darla MM, Ampasala DR, Vadde R, Amooru GD. Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. European Journal of Medicinal Chemistry. 2016;107: 219–232.
23.    Hancock AA. H3 receptor antagonists/inverse agonists as anti-obesity agents. Current Opinion in Investigational Drugs. 2003;4(10): 1190-1197.
24.    Parmentier R, Anaclet A, Guhennec C, Brousseau E, Bricout D, Giboulot T,  Bozyczko-Coyne D, Spiegel H, Williams M, Lin JS. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochemical Pharmacology. 2007; 73(8): 1157-1171.
25.    Gemkow MJ, Davenport AJ, Harich S, Ellenbroek BA, Cesura A, Hallett D. The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discovery Today.2009;14(9-10): 509-15.
26.    Cowart M, Altenbach R, Black L, Faghih R, Zhao C, Hancock AA. Medicinal Chemistry and Biological Properties of Non-Imidazole Histamine H3 Antagonists. Mini-Reviews in Medicinal Chemistry. 2004;4(9): 979– 992.
27.    Staszewski M, Stasiak A, Karcz T, Flores DM, Fogel WA, Kieć-Kononowicz K, Leurs R, and Walczyński K. Design, synthesis and in vitro and in vivo characterization of 1-{4-[4-(substituted)piperazin-1-yl]butyl}guanidines and their piperidine analogues as histamine H3 receptor antagonists. MedChemComm. 2019;10(2): 234–251.
28.    Alachkar A, Khan N, Łażewska D, Kieć-Kononowicz K,  Sadek B. Histamine H3 receptor antagonist E177 attenuates amnesia induced by dizocilpine without modulation of anxiety-like behaviors in rats. Neuropsychiatric Disease and Treatment. 2019;15: 531–542.
29.    Łażewska D, Kaleta M, Hagenow S, Mogilski S, Latacz G, Karcz T, Lubelska A, Honkisz E, Handzlik J, Reiner D, Satała G, Filipek B, Stark H, Kieć-Kononowicz K. Novel naphthyloxy derivatives – potent histamine H3 receptor ligands. Synthesis and phar¬macological evaluation. Bioorganic and Medicinal Chemistry. 2018; 26(9): 2573–2585.
30.    Ganellin CR, Leurquin F, Piripitsi A, Arrang JM, Garbarg M, Ligneau X, Schunack W, J C Schwartz JC. Synthesis of potent non-imidazole histamine H3-receptor antagonists. Archiv der Pharmazie-Chemistry in Life Sciences (Weinheim). 1998; 331(12): 395-404.
31.    Guryn R, Staszewski M, Kopczacki P, Walczynski K. Non-Imidazole Histamine H3 Ligands. Part VI. Synthesis and Preliminary Pharmacological Investigation of Thiazole-Type Histamine H3-Receptor Antagonists with Lacking a Nitrogen Nucleus in the Side Chain. Medicinal Chemistry. 2017;13(1): 65-76.
32.    Chai W, Breitenbucher JG, Kwok A, Li X, Wong V, Carruthers NI, Lovenberg TM, Mazur C, Wilson SJ,  Axe FU, Jones TK. Non-imidazole heterocyclic histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters. 2003;13(10): 1767-1770.
33.    Guryn R, Staszewski M, Walczyński K. Non-imidazole histamine H3 ligands: part V. synthesis and preliminary pharmacological investigation of 1-[2-thiazol-4-yl- and 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine derivatives. Medicinal Chemistry Research. 2013;22: 3640–3652.
34.    Olszewska B, Stasiak A, Flores DM, Fogel WA, Leurs R, Walczyński K. 4-Hydroxypiperidines and Their Flexible 3-(Amino)propyloxy Analogues as Non-Imidazole Histamine H3 Receptor Antagonist: Further Structure–Activity Relationship Exploration and In Vitro and In Vivo Pharmacological Evaluation. International Journal of Molecular Sciences. 2018;19(4): 1243.
35.    Sadek B, Stephan J, Schwed S, Subramanian D, Weizel L, Walter M, Adem A, Stark H. Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties. European Journal of Medicinal Chemistry. 2014;77: 269-279.
36.    Rao AU, Palani A, Chen X, Huang Y, Aslanian RG, West Jr. RE, Williams SM, Wu RL, Hwa J, Sondey C, Lachowicz J. Synthesis and structure–activity relationships of 2-(1,4′-bipiperidin-1′-yl)thiazolopyridine as H3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters. 2009;19: 6176–6180.
37.    Maryam HM, Zoha KA, Siavoush D, Orhan U. Qsar And Molecular Docking Studies On Non-Imidazole-Based Histamine H3 Receptor Antagonists. Pharma. Sciences. 2020;26(2): 165-174.
38.    Bose P, Mishra M, Gajbhiye A, Kashaw SK. QSAR, Pharmacophore Mapping and Molecular Docking of 2,4-Diaminoquinazoline as Antitubercular Scaffold: A Computational Hybrid Approach. Indian Journal of Pharma. Sci. 2019;81(6): 1078-1088.
39.    Singh P, Agrawal S, Mishra M, Rajoriya V, Kashaw SK. kNN-MFA-guided 3D-QSAR on Some PDE4 Inhibitors of Benzylamine derivatives For Chronic Obstructive Pulmonary Disease. Indian Journal of Pharma.Sciences. 2019;81(4): 790-796.
40.    Wang B, Liu MM, Wang BW, Li J, Shu M, Lin ZH. Combined 3D-QSAR and Molecular Docking Study on benzo[h][1,6]naphthyridin-2(1H)-one Analogues as mTOR Inhibitors. Indian Journal of Pharma. Sciences. 2018;80(1): 65-78.
41.    Ghode P, Jain SK. Structural Requirements for some 3-amino-Nsubstituted-4-(substituted phenyl) Butanamides as Dipeptidyl Peptidase-IV Inhibitors Using 3D-QSAR and Molecular Docking Approaches. Indian Journal of Pharmaceutical Sciences. 2017;79(6): 974-986.
42.    Kumbhar SS, Choudhari PB. 3D QSAR and Pharmacophore Modelling of Selected Benzimidazole Derivatives as Factor IXa Inhibitors. Indian Journal of Pharmaceutical Sciences. 2017;79(5): 813-819.
43.    Sainy N, Dubey N, Sharma R, Dubey N, Sainy J. 3D QSAR Analysis of Flavones as Antidiabetic agents. Research Journal of Pharmacy and Technology. 2022;15(4):1689-1695.
44.    Poojita K, Fathima F, Ray R, Kumar L, Verma R. Atom based 3D QSAR and Fingerprint based 2D QSAR of Novel Molecules as MmpL3 receptor inhibitors for Mycobacterium tuberculosis. Research Journal of Pharmacy and Technology. 2021;14(12): 6321-6329.
45.    Poojita K, Fathima F, Ray R, Kumar L, Verma R. 3D Atom based QSAR model of DprE1 inhibitors as Anti-tubercular Agents. Research Journal of Pharmacy and Technology. 2021;14(11): 5903-5910.
46.    Wijianto B, Ritmaleni, Purnomo H, Nurrochmad A. Quantitative Structure Activity Relationship (QSAR) study and Biological evaluation on Mono-ketone analogs of Curcumin as Antioxidant. Research Journal of Pharmacy and Technology. 2020;13(10): 4829-4835.
47.    Pai A, Jayashree BS. Computational Approach for the Design of Flavone based CDK2/CyclinA Inhibitors: A Simulation Study Employing Pharmacophore based 3D QSAR. Research Journal of Pharmacy and Technology. 2019;12(5): 2299-2303.
48.    Vaishnav Y, Thakur A, Kaur CD, Verma S, Mishra A, Jain SK, Ghode P. QSAR Analysis of some N, N-diphenyl urea derivatives as CCR5 Receptor Antagonist. Research Journal of Pharmacy and Technology. 2018;11(9): 3802-3810.
49.    Kale SC, Upadhayay A, Kale MK. Synthesis, Medicinal Applications and QSAR Study of Benzimidazole, Thiophene, Piperazine derivatives for Antimycobacterial, Antibacterial, Antifungal Activities. Research Journal of Pharmacy and Technology. 2018;11(12): 5385-5393.
50.    Vasudev P, Muddukrishna BS, Aravinda P. Computational Approach for the Design of Novel Tankyrase Inhibitors: A Rational Study based on Pharmacophore and Atom based 3D QSAR. Research Journal of Pharmacy and Technology. 2017;10(3): 778-784.
51.    Mullani A, Disouza JI. Synthesis and QSAR study of N-Substituted [5-(1H-1,2,4-Triazol-5-yl)pyridine-2-YL]methanimine Derivatives as potential Antibacterial. Asian Journal of Research in Chemistry. 2015;8(9): 561-565.
52.    Kawade VS, Kumbhar SS, Choudhari PB, Bhatia MS. 3D QSAR and Pharmacophore Modelling of some Pyrimidine Analogs as CDK4 Inhibitors. Asian Journal of Research in Chemistry. 2015;8(4): 231-235.
53.    VLifeMDS. VLife Technologies (A division of Nova Lead Pharma Pvt. Ltd.), Baner Road, Pune 411045, Maharashtra. Web:
54.    Inbar Y, Schneidman-Duhovny D, Dror O, Nussinov R, Wolfson HJ. Deterministic Pharmacophore Detection via Multiple Flexible Alignment of Drug-Like Molecules. Conference Proceedings of RECOMB. 2007, Vol. 3692 of Lecture Notes in Computer Science, 423-434. Springer Verlag.
55.    Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Research. 2008;36 (web server issue): W223-228.
56.    Dror O, Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Novel approach for efficient pharmacophore-based virtual screening: method and applications. Journal of Chemical Information and Modeling. 2009;49(10): 2333-2343.
57.    Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001;58(2): 109-130.
58.    Todeschini R, Ballabio D, Grisoni F. Beware of unreliable Q2! A comparative study of regression metrics for periodically assessment of QSAR models. J Chem Inf Model 2016;56: 1905-1913.
59.    De Muth JE. Basic statistics and pharmaceutical statistical applications. New York: Marcel Dekker, Inc., 1999.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available