Author(s):
Pavan Kumar.V, Narayanaswamy Harikrishnan
Email(s):
pavanvarikuti87@gmail.com
DOI:
10.52711/0974-360X.2023.00076
Address:
Pavan Kumar.V1*, Narayanaswamy Harikrishnan2
1Research Scholar, Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Velappanchavadi, Chennai - 600077, Tamilnadu, India.
2Department of Pharmaceutical Analysis, Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Velappanchavadi, Chennai - 600077, Tamilnadu, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Cancer is intense fitness trouble that is still considered to be the main reason for its demise worldwide. Nanotechnology considered as rising disciplines in technology and generation, which may be implemented to synthesize new materials on the nanoscale level. The application of nanotechnology in the treatment of several types of cancers has acquired a significant interest in current years. Cancer nanotechnology is an upcoming unique technique with vast application towards most cancers thru in time diagnosis, estimation and inhibition with the help of personalized medications. Plant occurring natural compounds considered as phytochemicals, crucial assets for most cancers remedy. Some traditional examples consist of curcumin, resveratrol, flavonoids, celastrol, berberine, camptothecins, vinca alkaloids (vincristine and vinblastine), taxol derivatives, and podophyllotoxin derivatives. These phytoconstituents directly act on molecular pathways that are inhibiting in increase and development of several cancers. Phytochemicals used in foods, supplements, and prescribed drugs is inadequate because of lower bioavailability, low solubility, less therapeutic efficacy, and stability problem. To get rid of these issues a modern and advanced novel delivery technique has been developed. These naturally occurring phytochemicals can be incorporated in the form of liposomes, niosomes, nanosomes, nanoparticles, and nanoemulsions to produce better therapeutic efficacy against cancer. This review focuses on the recent advancement and development of nanophytoconstituents in cancer therapy.
Cite this article:
Pavan Kumar.V, Narayanaswamy Harikrishnan. Nano-Phytoconstituents and its recent advancement in Anticancer efficacy. Research Journal of Pharmacy and Technology 2023; 16(1):447-2. doi: 10.52711/0974-360X.2023.00076
Cite(Electronic):
Pavan Kumar.V, Narayanaswamy Harikrishnan. Nano-Phytoconstituents and its recent advancement in Anticancer efficacy. Research Journal of Pharmacy and Technology 2023; 16(1):447-2. doi: 10.52711/0974-360X.2023.00076 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-76
REFERENCES:
1. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends in cell biology. 2019;29(3):212-26. https://doi.org/10.1016/j.tcb.2018.12.001
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer j clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492
3. Menon S, Agarwal H, Rajeshkumar S, Kumar SV. Anticancer assessment of biosynthesized silver nanoparticles using Mucuna pruriens seed extract on Lung Cancer Treatment. Res J Pharm Tech. 2018;11(9):3887-91. DOI : 10.5958/0974-360X.2018.00712.6
4. Li B, Gao MH, Chu XM, Teng L, Lv CY, Yang P, Yin QF. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur j pharm. 2015;749:107-14. https://doi.org/10.1016/j.ejphar.2015.01.009
5. Sumithra S, Vadivu R, Radha R. Colon Targeted Drug Delivery System of Phytoconstituents. Res J Pharm Tec. 2019;12(7):3144-50. DOI : 10.5958/0974-360X.2019.00530.4
6. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer research. 2008 Nov 1;68(21):8643-53. DOI: 10.1158/0008-5472.CAN-07-6611 Published November 2008
7. Przystupski D, Niemczura MJ, Górska A, Supplitt S, Kotowski K, Wawryka P, Rozborska P, Woźniak K, Michel O, Kiełbik A, Bartosik W. In search of panacea—review of recent studies concerning nature-derived anticancer agents. Nutrients. 2019;11(6):1426. https://doi.org/10.3390/nu11061426
8. Pandian RS, Noora AT. GC-MS Analysis of Phytochemical Compounds Present in the Leaves of Citrus medica. L. Res J Pharm Tec. 2019;12(4):1823-6. DOI : 10.5958/0974-360X.2019.00304.4
9. Pavithra RP, Jayashri P. Influence of naturally occurring phytochemicals on oral health. Research Journal of Pharmacy and Technology. 2019;12(8):3979-83. DOI : 10.5958/0974-360X.2019.00685.1
10. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218-20. DOI: 10.1126/science.275.5297.218
11. Kabary DM, Helmy MW, Abdelfattah EZ, Fang JY, Elkhodairy KA, Elzoghby AO. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur J Pharm Biopharm. 2018;130:152-64. https://doi.org/10.1016/j.ejpb.2018.06.027
12. Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol–A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J functional foods. 2017;30:203-19. https://doi.org/10.1016/j.jff.2017.01.022
13. Karpagam T, Firdous J, Priya S, Varalakshmi B, Gomathi S, Geetha S, Muhamad N. Anti-Cancer Activity of Aloe Vera Ethanolic Leaves Extract against In vitro Cancer Cells. Res J Pharm Tec. 2019;12(5):2167-70. DOI : 10.5958/0974-360X.2019.00360.3
14. Susmi MS, Kumar RS, Sreelakshmi V, Menon SV, Mohan S, Suja ST, Manakadan AA. A Computational approach for identification of Phytochemicals for targeting and optimizing the inhibitors of Heat shock proteins. Res J Pharm Tec. 2015;8(9):1199-204. DOI : 10.5958/0974-360X.2015.00219.X
15. Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta biomater. 2017;61:88-100. https://doi.org/10.1016/j.actbio.2017.04.017
16. Lall RK, Syed DN, Adhami VM, Khan MI, Mukhtar H. Dietary polyphenols in prevention and treatment of prostate cancer. Int j molecular sci. 2015;16(2):3350-76. https://doi.org/10.3390/ijms16023350
17. DiMarco-Crook C, Xiao H. Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annual review of food sci tech. 2015;6:505-26. https://doi.org/10.1146/annurev-food-081114-110833
18. Ruiz RB, Hernández PS. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas. 2016;94:13-9. https://doi.org/10.1016/j.maturitas.2016.08.004
19. Bhanot A, Sharma R, Noolvi MN. Natural sources as potential anti-cancer agents: A review. Int j phytomed. 2011;3(1):09.
20. Sheng-Nan S, Chao W, Zan-Zan Z, Yang-Long H, Venkatraman SS, Zhi-Chuan X. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B. 2014;23(3):037503. https://doi.org/10.1088/1674-1056/23/3/037503
21. Reddy JM, Anitha R, Rajeshkumar S, Lakshmi T. Characterisation of Cumin oil mediated silver nanoparticles using UV-visible spectrophotometer and TEM. Res J Pharm Tec. 2019;12(10):4931-3.
22. Bhadoriya SS, Mangal A, Madoriya N, Dixit P. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: a review. J Curr Pharm Res. 2011;8:1-7.
23. Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence. 2019;6(1):1-30. https://doi.org/10.1186/s40580-019-0193-2
24. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9‐10):1521-32. https://doi.org/10.1002/smll.201201390
25. Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J controlled release. 2019;301:76-109. https://doi.org/10.1016/j.jconrel.2019.03.015
26. Kalyankar TM, Butle SR, Chamwad GN. Application of nanotechnology in cancer treatment. Res J Pharm Tech. 2012;5(9):1161-7.
27. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug discovery today. 2003;8(24):1112-20. https://doi.org/10.1016/S1359-6446(03)02903-9
28. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. Journal of drug targeting. 2007;16(2):108-23. https://doi.org/10.1080/10611860701794353
29. Haque SE, Sheela A. Development of polymer-bound fast-dissolving metformin buccal film with disintegrants. Int j nanomed. 2015;10(Suppl 1):199. doi: 10.2147/IJN.S80052
30. Menon S, Agarwal H, Rajeshkumar S, Kumar SV. Anticancer assessment of biosynthesized silver nanoparticles using Mucuna pruriens seed extract on Lung Cancer Treatment. Res J Pharm Tec. 2018;11(9):3887-91. DOI : 10.5958/0974-360X.2018.00712.6
31. Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res. 2006;23(1):1-30. https://doi.org/10.1007/s11095-005-9046-2
32. Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, Arulselvan P, Norhaizan ME. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int j nanomed. 2017;12:2361. doi: 10.2147/IJN.S126245
33. Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM, Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorganic and medicinal chemistry letters. 2018;28(17):2816-26. https://doi.org/10.1016/j.bmcl.2018.06.044
34. Kim B, Jung N, Lee S, Sohng JK, Jung HJ. Apigenin inhibits cancer stem cell‐like phenotypes in human glioblastoma cells via suppression of c‐met signaling. Phytotherapy Res. 2016;30(11):1833-40. https://doi.org/10.1002/ptr.5689
35. Li YW, Xu J, Zhu GY, Huang ZJ, Lu Y, Li XQ, Wang N, Zhang FX. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell death discovery. 2018;4(1):1-9. https://doi.org/10.1038/s41420-018-0124-8
36. Ketkaew Y, Osathanon T, Pavasant P, Sooampon S. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Archives of oral biology. 2017;74:69-74. https://doi.org/10.1016/j.archoralbio.2016.11.010
37. Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int j pharm. 2012;436(1-2):311-7. https://doi.org/10.1016/j.ijpharm.2012.07.002
38. Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer letters. 2018;413:11-22. https://doi.org/10.1016/j.canlet.2017.10.041
39. The compound in the Mediterranean diet that makes cancer cells 'mortal' Emily Caldwell, Medical Express, May 20, 2013.
40. Venigalla M, Gyengesi E, Münch G. Curcumin and Apigenin–novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Reg Res. 2015;10(8):1181. doi: 10.4103/1673-5374.162686
41. Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell and bioscience. 2017;7(1):1-6. https://doi.org/10.1186/s13578-017-0179-x
42. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer. 2011;10(1):1-9. https://doi.org/10.1186/1476-4598-10-12
43. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease. 2007:1-75. DOI: 10.1007/978-0-387-46401-5_1
44. Yadav AR, Mohite SK. Cancer-A silent killer: An overview. Asian J Pharm Res. 2020;10(3):213-6. DOI : 10.5958/2231-5691.2020.00036.2
45. Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clinical Sci. 2017;131(15):1781-99. https://doi.org/10.1042/CS20160935
46. Novitasari D, Jenie RI, Wulandari F, Utomo RY, Putri DD, Kato JY, Meiyanto E. Curcumin-like structure (CCA-1.1) induces permanent mitotic arrest (Senescence) on Triple-negative breast cancer (TNBC) cells, 4T1. Res J Pharm Tec. 2021;14(8):4375-82. DOI: 10.52711/0974-360X.2021.00760
47. Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Bio Med Res Int. 2014 Oct;2014. https://doi.org/10.1155/2014/761608
48. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Molecular pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113r
49. Jankun J, Wyganowska-Świątkowska M, Dettlaff K, Jelińska A, Surdacka A, Wątróbska-Świetlikowska D, Skrzypczak-Jankun E. Determining whether curcumin degradation/condensation is actually bioactivation. Int j molecular med. 2016;37(5):1151-8. https://doi.org/10.3892/ijmm.2016.2524
50. Shen L, Ji HF. The pharmacology of curcumin: is it the degradation products?. Trends in molecular med. 2012;18(3):138-44. https://doi.org/10.1016/j.molmed.2012.01.004
51. Gurushankar K, Gohulkumar M, Prasad NR, Krishnakumar N. Synthesis, characterization and in vitro anti-cancer evaluation of hesperetin-loaded nanoparticles in human oral carcinoma (KB) cells. Advances in Natural Sciences: Nano Nanotech. 2013;5(1):015006. https://doi.org/10.1088/2043-6262/5/1/015006
52. L Arias J, Clares B, E Morales M, Gallardo V, A Ruiz M. Lipid-based drug delivery systems for cancer treatment. Current drug targets. 2011;12(8):1151-65. DOI: https://doi.org/10.2174/138945011795906570