Author(s):
Usha Rani Kandula, Kasturi Vishwanathasetty Veerabhadrappa, Narayana Goruntla, Bedasa Woldemichael, Aliy Kediro, Milka D Madhale, Ketema Diriba, Abdurazak Jamal Tura
Email(s):
kasturibadri73@gmail.com
DOI:
10.52711/0974-360X.2023.00075
Address:
Usha Rani Kandula1, Kasturi Vishwanathasetty Veerabhadrappa2,3*, Narayana Goruntla3, Bedasa Woldemichael1, Aliy Kediro1, Milka D Madhale1, Ketema Diriba1, Abdurazak Jamal Tura2
1Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia, P.O. Box: 196.
2Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia, P.O. Box: 196.
3Department of Pharmacy, School of Pharmacy, Kampala International University, Western Campus, Ishaka, Uganda, P.O. Box: 20000.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Severe acute respiratory corona virus-2 (SARS-CoV-2) is a newly recognized pathogen and may cause severe respiratory illness among virus-infected people. The virus in the open market of Wuhan city, China was identified. The virus causative agent for the COVID-19 disease and became pandemic in December 2019 to now with no proper disease management protocols. So, the authors felt a need to bring awareness to the disease and its causative agent among worldwide.The current review article is trying to bringglance information on SARS-CoV-2 on various aspects of disease condition as Common characteristics, history, and mode of transmissions of the virus. The virus can be detected through investigations, Identified clinical manifestations for the virus, and available management used to treat the virus-infected patient. Here discussed possible preventive measures for SARS-CoV-2;to control the spread of the disease among the communities. This article information maybea help people to have an awareness of the disease.Health professional are trying hard for providing effective care to the virus affected people with minimal disease preventive protocols. People should understand the effectiveness of the vaccine and undergoing vaccination process which helps the spread of virus among the healthy people. Every individual should take initiation for the control of the disease spreads by following controlling measures.
Cite this article:
Usha Rani Kandula, Kasturi Vishwanathasetty Veerabhadrappa, Narayana Goruntla, Bedasa Woldemichael, Aliy Kediro, Milka D Madhale, Ketema Diriba, Abdurazak Jamal Tura. Knowledge, Concept on severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). A Review of the Literature and Future perspective. Research Journal of Pharmacy and Technology 2023; 16(1):441-6. doi: 10.52711/0974-360X.2023.00075
Cite(Electronic):
Usha Rani Kandula, Kasturi Vishwanathasetty Veerabhadrappa, Narayana Goruntla, Bedasa Woldemichael, Aliy Kediro, Milka D Madhale, Ketema Diriba, Abdurazak Jamal Tura. Knowledge, Concept on severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). A Review of the Literature and Future perspective. Research Journal of Pharmacy and Technology 2023; 16(1):441-6. doi: 10.52711/0974-360X.2023.00075 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-75
REFERENCES:
1. World Health Organization (WHO). Novel Coronavirus (2019-nCoV) Situation Report –22. Available from: URL: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf (2020).
2. Dietz L. Horve PF. Coil DA. 2019 Novel coronavirus (COVID-19) pandemic: Built environment considerations to reduce transmission.2020; 5(2).doi.org/10.1128/mSystems.00245-20
3. Zhao X. Ma X. Wang W et al A novel coronavirus genome identified in a cluster of pneumonia cases -Wuhan, China 2019−2020. China CDC Weekly. 2020;2(4):61–2. doi.org/10.19485/j.cnki.issn2096-5087.2021.09.019
4. Goud CM. Coronavirus Disease 2019 -FDA Updates.Asian Journal of Research in Pharmaceutical Sciences. 2020; 10(4):273–81.doi:10.5958/2231-5659.2020.00048
5. World Health Organization (WHO). Coronavirus disease (COVID-19). Available from: URL:https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
6. Beaudette FR. Hudson CB. Newly recognized poultry disease. North Am Vet.1933; (1);14:50. https://www.jstor.org/stable/1587540
7. Dubey SR.Corona Virus. International Journal of Nursing Education and Research.2020;8(3):411–414. DOI: 10.5958/2454-2660.2020.00091.5
8. Barcena M. Oostergetel GT. Bartelink W et al. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci U S A. 2009;106(2):582–7.doi: 10.1073/pnas.0805270106
9. Neuman BW. Adair BD.Yoshioka C et al Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918–28.doi: 10.1128/JVI.00645-06
10. Armstrong J. Niemann H. Smeekens S et al. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature.1984;308(5961):751–2. doi: 10.1038/308751a0
11. Neuman BW. Kiss G. Kunding AH et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22.doi: 10.1016/j.jsb.2010.11.021
12. Godet M. L’Haridon R. Vautherot JF et al. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992;188(2):666–75.doi: 10.1016/0042-6822(92)90521
13. Nieto-Torres JL. DeDiego ML. Verdiá-Baguena C et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10(5):e1004077.doi: 10.1371/journal.ppat.1004077
14. Klausegger A. Strobl B. Regl G et al. Identification of a coronavirus hemagglutinin-esterase with substrate specificity different from those of influenza C virus and bovine coronavirus. J Virol. 1999 ;73(5):3737–43. doi: 10.1128/JVI.73.5.3737-3743.1999
15. Cornelissen LA. Wierda CM. van der Meer FJ et al. Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol. 1997;71(7):5277–86. https://doi.org/10.1128/2Fjvi.71.7.5277-5286.1997
16. Tahir UQM. Alqahtani SM. Alamri MA et al. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313–9. doi: 10.1016/j.jpha.2020.03.009
17. Xu X. Chen P. Wang J et alEvolution of the novel coronavirus from the ongoing wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457–60. doi: 10.1007/s11427-020-1637-5
18. Harsha NS. Rivas-Santisteban J. Satish RT. Kumar GS. Analysis of the Evolutionary pattern of SARS-CoV-2 and its implications in the spread of the disease. Research Journal of Pharmacy and Technology. 2021; 14(4):2229–32. doi.org/10.52711/0974-360X.2021.00396
19. World Health Organization (WHO). Transmission of SARS-CoV-2: implications for infection prevention precautions. URL: https://www.who.int/publications-detail-redirect/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations.
20. Chibo D. Birch C. Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J Gen Virol. 2006;87(pt5):1203–8. doi: 10.1099/vir.0.81662-0
21. Vijgen L. Keyaerts E. Lemey P et al Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology. 2005;337(1):85–92. doi: 10.1016/j.virol.2005.04.010
22. Jain MRS. Awad MBB. Patil MSB. Patil MPA. Karnavat MDR. Review on Coronovirus its Different Types. Asian Journal of Research in Pharmaceutical Sciences.2020;10(2):115–23.doi.org/10.5958/2231-5659.2020.00022.3
23. Dawood AA. SARS-Cov-2 Is Originated from Bat Corona Virus. Research Journal of Science and Technology. 2021;13(1):31–2.doi.org/10.5958/2349-2988.2021.00005
24. Peiris JSM. Chu CM. Cheng VCC et alClinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767–72. doi: 10.1016/s0140-6736(03)13412-5
25. Spiegel M. Schneider K. Weber F et al Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol. 2006; 87(Pt 7):1953–60. doi: 10.1099/vir.0.81624-0
26. Law HKW. Cheung CY. Ng HY et al Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106(7):2366–74. doi: 10.1182/blood-2004-10-4166
27. Chen N. Zhou M. Dong Xet al Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507–13. doi.org/10.1016/S0140-6736(20)30211-7
28. Yadav AR. Mohite SK. A Review on Severe Acute Respiratory Infection (SARI) and its Clinical Management in Suspect/Confirmed Novel Coronavirus (nCoV) Cases. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020;12(3):178–80. ID: covidwho-1280924
29. Sofi MS. Hamid A. Bhat SU. SARS-CoV-2: A critical review of its history, pathogenesis, transmission, diagnosis and treatment. Biosaf Health. 2020;2(4):217–25.doi.org/10.1016/j.bsheal.2020.11.002
30. Pranjal S. Raksha G. Haymanshu P. Deepak K. Mary CS. Covid-19 Test Detection by Real Time RT-PCR. Research Journal of Pharmacology and Pharmacodynamics. 2021;13(1):22–6.doi.org/10.5958/2321-5836.2021.00005.7
31. Tu Y-F. Chien C-S. Yarmishyn AA et alA review of SARS-CoV-2 and the ongoing Clinical Trials. Int J Mol Sci.202; 21(7). doi.org/10.3390/ijms21072657
32. Patil PA. Jain RS. Theoretical Study and treatment of Novel COVID-19. Research Journal of Pharmacology and Pharmacodynamics. 2020;12(2):71–2. doi.org/10.5958/2321-5836.2020.00014.2
33. Debnath S. Chakravorty R. Devi D. COVID 19 and its management. Asian Journal of Pharmaceutical Research.2021;11(2):117–21. doi.org/10.52711/2231-5691.2021.00022
34. Regalado A. What are the best coronavirus treatments?. MIT Technology Review.2020; 2(3):
35. Gautret P. Lagier JC. Parola P et al Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.10.1016/j.ijantimicag.2020.105949. Epub 2020 Mar 20
36. Liu J. Cao R. Xu M et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(16). doi: 10.1038/s41421-020-0156-0. eCollection 2020.
37. Rolain JM. Colson P. Raoult D et al Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30(4):297–308. doi: 10.1016/j.ijantimicag.2007.05.015.
38. Clinical Trials Gov.An open clinical trial to evaluate ganovo (Danoprevir )combined with ritonavir in the treatment of SARS-CoV-2 Infection. clinicaltrials.gov/ct2/show/NCT04291729.
39. P G. Jc L. P P et al Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents; 2010; 56(1): 105949. doi: 10.1016/j.ijantimicag.2020.105949. Epub 2020 Mar 20
40. Butler CC. Dorward J. Yu LM et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK: a randomised, controlled, open-label, adaptive platform trial. The Lancet. 2021;397(10279):1063–74. doi: 10.1016/S0140-6736(21)00461-X. Epub 2021 Mar 4
41. Cherin P. Marie I. Michallet M et alManagement of adverse events in the treatment of patients with immunoglobulin therapy: A review of evidence. Autoimmun Rev. 2016;15(1):71–81. doi: 10.1016/j.autrev.2015.09.002
42. Srinivasan S. Ghosh M. Maity S et albroadly neutralizing antibodies for therapy of viral infections. ANTI. 2016;6:1–15. doi.org/10.2147/ANTI.S92190
43. Gilead Sciences. A phase 3 randomized study to evaluate the safety and antiviral activity of remdesivir (GS-5734TM) in participants with severe COVID-19. clinicaltrials.gov/ct2/show/NCT04292899.
44. Wang M. Cao R. Zhang L et al Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. 2020;30(3):269–71.doi: 10.1038/s41422-020-0282-0. Epub 2020 Feb 4
45. Blaising J. Polyak SJ. Pecheur E-I. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014;107:84–94.doi: 10.1016/j.antiviral.2014.04.006. Epub 2014 Apr 24
46. Clinical Trials Gov. Randomized open multicenter study on the efficacy and safety of arbidol hydrochloride tablets in treating pneumonia in patients infected with novel coronavirus (2019-ncov). clinicaltrials.gov/ct2/show/NCT04260594.
47. Uyeki TM. Oseltamivir treatment of influenza in children. Clinical Infectious Diseases. 2018;66(10):1501–3.doi.org/10.1093/2Fcid/Fcix1150
48. University hospitals Coventry and warwickshire NHS trust. Prospective randomized parallel-group open-label study to evaluate the efficacy and safety of IMU-838, in combination with oseltamivir, in adults with COVID-19. clinicaltrials.gov/ct2/show/NCT04516915.
49. Okubo K. Isono M. Asano T et al Lopinavir-ritonavir combination induces endoplasmic reticulum stress and kills urological cancer cells. Anticancer Res. 2019; 39(11):5891–901.doi: 10.21873/anticanres.13793
50. Arabi YM. Asiri AY. Assiri AM et al Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b: statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2020;21(1):8. doi: 10.1186/s13063-019-3846-x
51. Santos JR. Curran A. Navarro M J et alSimplification of antiretroviral treatment from darunavir/ritonavir monotherapy to darunavir/cobicistat monotherapy: Effectiveness and safety in routine clinical practice. AIDS research and human retroviruses. 2019;35(6):513–8.doi: 10.1089/AID.2018.0178. Epub 2019 May 8
52. Lu H. Efficacy and safety of darunavir and cobicistat for treatment of COVID-19. Clinicaltrials.gov;2020 clinicaltrials.gov/ct2/show/NCT04252274.
53. Gaunt ER. Hardie A. Claas ECJ et al Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 Years using a novel multiplex Real-Time PCR method. Journal of Clinical Microbiology. 2010;48(8):2940–7.doi: 10.1128/JCM.00636-10. Epub 2010 Jun 16
54. Schneider WM. Chevillotte MD. Rice CM. Interferon-Stimulated Genes: A complex web of host defenses. Annu Rev Immunol. 2014 Mar 21;32(1):513–45. doi: 10.1146/annurev-immunol-032713-120231
55. Clinical Trials Gov. Multicenter clinical study on the efficacy and safety of xiyanping injection in the treatment of new coronavirus infection pneumonia (General and severe). clinicaltrials.gov/ct2/show/NCT04295551.
56. Clinical Trials Gov. Retrospective cohort to evaluate the effectiveness and safety of xiyanping injection combined with conventional treatment for new coronavirus infection pneumonia (Common type). clinicaltrials.gov/ct2/show/NCT04275388.
57. Clinical Trials Gov.The efficacy and safety of thalidomide combined with low-dose hormones in the treatment of severe new coronavirus (COVID-19) pneumonia: a prospective multicenter randomized double-blind, Placebo, parallel controlled clinical study. clinicaltrials.gov/ct2/show/NCT04273581.
58. Clinical Trial Gov.The efficacy and safety of thalidomide in the adjuvant treatment of moderate new coronavirus (COVID-19) pneumonia: a prospective, multicenter, randomized, double-blind, placebo, parallel controlled clinical study. clinicaltrials.gov/ct2/show/NCT04273529.
59. Kashiouris MG. Heureux M. Cable CA et alThe emerging role of vitamin C as a treatment for sepsis. nutrients. 2020;12(2):292. doi: 10.3390/nu12020292
60. Peng Z. Vitamin C infusion for the treatment of severe 2019-nCoV infected pneumonia: a prospective randomized clinical trial. clinicaltrials.gov/ct2/show/NCT04264533.
61. Clinical Trials Gov. Glucocorticoid therapy for critically ill patients with severe acute respiratory infections caused by COVID-19: a prospective, randomized controlled trial. clinicaltrials.gov/ct2/show/NCT04244591.
62. Dourado HV. Efficacy of injectable methylprednisolone sodium succinate in the treatment of patients with signs of severe acute respiratory syndrome under the new coronavirus (SARS-CoV2): a Phase IIb, randomized, double-blind,placebo-controlled. clinicaltrials.gov/ct2/show/NCT04343729.
63. Clinical Trials Gov. Evaluating the efficacy and safety of bromhexine hydrochloride tablets combined with standard treatment/ standard treatment in patients with suspected and mild novel coronavirus pneumonia (COVID-19). clinicaltrials.gov/ct2/show/NCT04273763.
64. Li T. Sun L. Zhang W et al Bromhexine hydrochloride tablets for the treatment of moderate COVID-19: An open-label randomized controlled pilot study. Clinical and translational science. 2020;13(6):1096–102. doi: 10.1111/cts.12881
65. Wang Y. Fei D. Vanderlaan M et al Biological activity of bevacizumab, humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7(4):335–45.doi: 10.1007/s10456-004-8272-2. Epub 2005 May 9
66. Clinical Trials Gov. Effecacy and safety of bevacizumab in severe patients with COVID-19: a pilot study (BEST-CP). clinicaltrials.gov/ct2/show/NCT04275414.
67. Wang N. Efficacy of fingolimod in the treatment of new coronavirus pneumonia (COVID-19). clinicaltrials.gov/ct2/show/NCT04280588.
68. Richardson P. Griffin I. Tucker C et al Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30–1. doi: 10.1016/S0140-6736(20)30304-4. Epub 2020 Feb 4
69. Nowak JK. Walkowiak J. Lithium and coronaviral infections. A scoping review. F1000Res. 2020;9:93. doi: 10.12688/f1000research.22299.2.
70. Sun ML. Yang JM. Sun YP et al Inhibitors of RAS might be a good choice for the therapy of COVID-19 Pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(0):E014. DOI: 10.3760/cma.j.issn.1001-0939.2020.0014
71. Fan HH. Wang LQ. Liu WL et al Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl).2020 Mar 6; doi: 10.1097/CM9.0000000000000797
72. Xin S. Cheng X. Zhu B et alClinical retrospective study on the efficacy of qingfei paidu decoction combined with western medicine for COVID-19 treatment. Biomed Pharmacother. 2020;129:110500.doi: 10.1016/j.biopha.2020.110500. Epub 2020 Jul 4
73. Zhang H. A randomized, open-label study to evaluate the efficacy and safety of pirfenidone in patients with severe and critical novel coronavirus infection. https://clinicaltrials.gov/ct2/show/NCT04282902.
74. Sizun J. Yu MW. Talbot PJ. Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: a possible source ofhospital-acquired infections. J Hosp Infect. 2000;46(1):55–60.doi: 10.1053/jhin.2000.0795
75. Duan SM. Zhao XS. Wen RF et alStability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci. 2003;16(3):246–55. PMID: 14631830
76. Lai MYY. Cheng PKC. Lim WWL. Survival of severe acute respiratory syndrome coronavirus. Clinical Infectious Diseases. 2005;41(7):e67–71.doi: 10.1086/433186. Epub 2005 Aug 22
77. Doremalen NV. Bushmaker T. Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance. 2013;18(38):20590. doi: 10.2807/1560-7917.es2013.18.38.20590
78. Casanova LM. Jeon S. Rutala WA et alEffects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol. 2010;76(9):2712–7. doi: 10.1128/AEM.02291-09
79. Rabenau HF. Kampf G. Cinatl J et al Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005;61(2):107–11. doi: 10.1016/j.jhin.2004.12.023
80. Siddharta A. Pfaender S. Vielle NJ et al Virucidal activity of world health organization-recommended formulations against enveloped viruses, including zika, ebola, and emerging coronaviruses. J Infect Dis. 2017;215(6):902–6. doi: 10.1093/infdis/jix046
81. Tu YF. Chien CS, Yarmishyn AA. et al A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21(7). doi: 10.3390/ijms21072657
82. Sheahan TP. Sims AC. Leist SRet alComparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222. doi: 10.1038/s41467-019-13940-6.
83. Lee JW. Gupta N. Serikov V et alPotential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther. 2009;9(10):1259–70. doi: 10.1517/14712590903213651
84. Agostini ML. Andres EL. Sims AC. et al Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio.2018;9(2). doi: 10.1128/mBio.00221-18
85. Chappell K. Watterson D. Young P. Rapid response pipeline for stabilized subunit vaccines. Vaccine Technology VII. 2018 Jun 20; Available from: URL: https://dc.engconfintl.org/vt_vii/111.
86. Al-Halifa S. Gauthier L. Arpin D et al Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019;10:22. doi: 10.3389/fimmu.2019.00022. eCollection 2019
87. Srivastava N. Saxena SK. Prevention and control strategies for SARS-CoV-2 infection. Coronavirus disease 2019 (COVID-19). 2020;127–40. doi: 10.1007/978-981-15-4814-7_11
88. Twu SJ. Chen TJ. Chen CJ et al Control measures for severe acute respiratory syndrome (SARS) in Taiwan. Emerging Infectious Diseases journal - CDC. 2003;9(6):71-720. doi: 10.3201/eid0906.030283
89. P R. S SP. Saraswathi P. M V. Respiratory Hygiene in Covid 19. International Journal of Advances in Nursing Management. 2020;8(4):345–6. doi: 10.5958/2454-2652.2020.00077.3