Author(s): Arif Juliari Kusnanda, Abdi Dharma, Armaini, Syafrizayanti, Zulkarnain Chaidir

Email(s): zulkarnainchaidir@sci.unand.ac.id

DOI: 10.52711/0974-360X.2023.00069   

Address: Arif Juliari Kusnanda, Abdi Dharma, Armaini, Syafrizayanti, Zulkarnain Chaidir*
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University. Kampus Limau Manis, Padang, West Sumatera, 25163, Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 1,     Year - 2023


ABSTRACT:
Microalgae contain some active compounds that can be used for various purposes, such as carotenoids and high-value compounds with antioxidant capacity to be used as ingredients for food and pharmaceuticals This study aims to isolate microalgae from freshwater to produce carotenoid pigments. A green microalga was isolated from a local freshwater pond. Morphological observation and molecular analysis were performed to identify the microalgae. The molecular phylogenetic analysis was conducted based on the sequences of 18S rRNA genes. The carotenoid pigments were then extracted from the microalgae using water: methanol: dichloromethane (1:2:1,v/v/v). Further carotenoid pigments were then characterized using ultraviolet–visible (UV–Vis) spectrophotometry, FTIR, and HPLC. The antioxidant activity of the microalgae carotenoid extracts was determined with the 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) radical scavenging assay. The results showed that the microalgae belong to the species Mychonastes racemosus AUP1. Carotenoid extracts was obtained from microalgae were about to 86 mg/g dry weight extract was obtained from extraction process of microalgae. Based on FTIR, and HPLC analysis, the microalgae carotenoid extracts contained ß-carotene (C40H56) and lutein (C40H56O4). The IC50 value of microalgae carotenoid extract was 78.61 µg/mL. This study suggests that microalgae Mychonastes racemosus AUP1 are potential sources for obtaining carotenoid with strong antioxidant activity. In the future, the microalgae Mychonastes racemosus AUP1 has the potential for prospection of functional foods.


Cite this article:
Arif Juliari Kusnanda, Abdi Dharma, Armaini, Syafrizayanti, Zulkarnain Chaidir. Carotenoid Profile of Freshwater Microalgae Mychonastes racemosus AUP1 and its Antioxidant properties. Research Journal of Pharmacy and Technology 2023; 16(1):404-0. doi: 10.52711/0974-360X.2023.00069

Cite(Electronic):
Arif Juliari Kusnanda, Abdi Dharma, Armaini, Syafrizayanti, Zulkarnain Chaidir. Carotenoid Profile of Freshwater Microalgae Mychonastes racemosus AUP1 and its Antioxidant properties. Research Journal of Pharmacy and Technology 2023; 16(1):404-0. doi: 10.52711/0974-360X.2023.00069   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-69


REFERENCES:
1.    Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. JAOCS, J Am Oil Chem Soc. 1998;75(2):199-212. doi:10.1007/s11746-998-0032-9
2.    Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164-175. doi:10.1016/j.cbi.2014.10.016
3.    Chakraborty P, Kumar S, Dutta D, Gupta V. Role of Antioxidants in Common Health Diseases. Res J Pharm Tech. 2009;2(2):238-244.
4.    Saha D, Tamrakar A. Xenobiotics , Oxidative Stress , Free Radicals Vs . Antioxidants : Dance Of Death to Heaven ’ s Life . Asian J Res Pharm Sci. 2011;1(2):36-38.
5.    Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015;30(1):11-26. doi:10.1007/s12291-014-0446-0
6.    Liang N, Kitts DD. Antioxidant Property of Coffee Components: Assessment of Methods that Define Mechanisms of Action. 2014;(November). doi:10.3390/molecules191119180
7.    Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. J Ethnopharmacol. 2020;248(July 2019):112268. doi:10.1016/j.jep.2019.112268
8.    Panchawat S, Rathore KS, Sisodia SS. A review on herbal antioxidants. Int J PharmTech Res. 2010;2(1):232-239.
9.    Ismail BB, Pu Y, Fan L, Dandago MA, Guo M, Liu D. Science of the Total Environment Characterizing the phenolic constituents of baobab ( Adansonia digitata ) fruit shell by LC-MS / QTOF and their in vitro biological activities. Sci Total Environ. 2019;694:133387. doi:10.1016/j.scitotenv.2019.07.193
10.    Pasaribu KM, Gea S, Ilyas S, et al. Fabrication and in-vivo study of micro-colloidal Zanthoxylum acanthopodium-loaded bacterial cellulose as a burn wound dressing. Polymers (Basel). 2020;12(7). doi:10.3390/polym12071436
11.    Li H Bin, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102(3):771-776. doi:10.1016/j.foodchem.2006.06.022
12.    Noor A, Gunasekaran S, Vijayalakshmi MA. Article in Pharmacognosy Research • October 2017. Pharmacognosy Res. 2018;10(October):24-30. doi:10.4103/pr.pr
13.    Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14(2):557-577. doi:10.1016/j.rser.2009.10.009
14.    Ee DONGNL. Antiproliferative Effects of Carotenoids Extracted from Chlorella ellipsoidea and Chlorella vulgaris on. Published online 2008:10521-10526.
15.    Aburai N, Ohkubo S, Miyashita H, Abe K. Composition of carotenoids and identification of aerial microalgae isolated from the surface of rocks in mountainous districts of Japan. Algal Res. 2013;2(3):237-243. doi:10.1016/j.algal.2013.03.001
16.    Sharma AK, Parul, General T. Variation of both chemical composition and antioxidant properties of newly isolated Parachlorella kessleri GB1, by growing in different culture conditions. Lwt. 2019;112(September 2018). doi:10.1016/j.lwt.2019.05.103
17.    Dantas DM de M, Oliveira CYB de, Costa RMPB, Carneiro-da-Cunha M das G, Gálvez AO, Bezerra R de S. Evaluation of antioxidant and antibacterial capacity of green microalgae Scenedesmus subspicatus. Food Sci Technol Int. 2019;25(4):318-326. doi:10.1177/1082013218825024
18.    Hynstova V, Sterbova D, Klejdus B, Hedbavny J, Huska D, Adam V. Journal of Pharmaceutical and Biomedical Analysis Separation , identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography. J Pharm Biomed Anal. 2018;148:108-118. doi:10.1016/j.jpba.2017.09.018
19.    Effect of UV-β radiation on the Growth, Pigment production and.pdf.
20.    Armaini A, Dharma A, Salim M. The nutraceutical effect of Scenedesmus dimorphus for obesity and nonalcoholic fatty liver disease-linked metabolic syndrome. J Appl Pharm Sci. 2020;10(5):70-76. doi:10.7324/JAPS.2020.10510
21.    Heffernan N, Smyth TJ, FitzGerald RJ, et al. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innov Food Sci Emerg Technol. 2016;37:221-228. doi:10.1016/j.ifset.2016.06.004
22.    Saini RK, Keum YS. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018;240(June 2017):90-103. doi:10.1016/j.foodchem.2017.07.099
23.    Selvi PS, Iyer P. Isolation and characterization of pigments from microorganisms isolated from marine soil. Res J Pharm Technol. 2018;11(10):4296-4302. doi:10.5958/0974-360X.2018.00786.2
24.    Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ. HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Curr Res Food Sci. 2020;3:100-112. doi:10.1016/j.crfs.2020.03.009
25.    Jesus P da CC de, Mendes MA, Perpétuo EA, Basso TO, Nascimento CAO do. Extracellular carotenoid production and fatty acids profile of Parachlorella kessleri under increased CO2 concentrations. J Biotechnol. 2021;329(November 2020):151-159. doi:10.1016/j.jbiotec.2021.02.004
26.    Hussein RA, Salama AAA, El Naggar ME, Ali GH. Medicinal impact of microalgae collected from high rate algal ponds; phytochemical and pharmacological studies of microalgae and its application in medicated bandages. Biocatal Agric Biotechnol. 2019;20(May):101237. doi:10.1016/j.bcab.2019.101237
27.    Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar Drugs. 2019;17(11):1-21. doi:10.3390/md17110640
28.    Priyadarshani I, Rath B. Commercial and industrial applications of micro algae – A review. 2012;3(4):89-100.
29.    Communication S. Two Important Techniques for Isolation of Microalgae. 2007;20:117-124.
30.    Perdana BA, Dharma A, Zakaria IJ, Syafrizayanti. Freshwater pond microalgae for biofuel: Strain isolation, identification, cultivation and fatty acid content. Biodiversitas. 2021;22(2):505-511. doi:10.13057/biodiv/d220201
31.    Sekatresna W, Dharma A, Zein R, Chaidir Z. Identification of blue-green algae uncultured oscillatoria sp IPOME-4 isolated from local industry effluent with the potential as β-carotene feedstock. Der Pharma Chem. 2016;8(12):110-117.
32.    Ricken A, Dimitrov A, Larissa C, et al. Isolation and identi fi cation of new microalgae strains with antibacterial activity on food-borne pathogens . Engineering approach to optimize synthesis of desired metabolites. Biochem Eng J. 2019;144(August 2018):28-39. doi:10.1016/j.bej.2019.01.007
33.    Kumar T, Jain V. Phytochemical screening, phenolic, flavonoids, carotenoids contents and antioxidant activity of folkloric Memecylon edule roxb. Res J Pharm Technol. 2016;9(10):1547-1551. doi:10.5958/0974-360X.2016.00303.6
34.    Lichtenthaler HK. Chlorophyll and Carotenoid Determination: pigments of photosynthetic biomembranes. Methods in Ensymology. 1987;8(148):349-382.
35.    Wang F. Optimum Production Conditions , Purification ,. Mar Drugs. Published online 2018. doi:10.3390/md16060190
36.    Priyanka S, Kirubagaran R, Mary Leema JT. Optimization of ultrasound-assisted extraction (Uae) of zeaxanthin from marine microalgae dunaliella tertiolecta (niot 141) using response surface methodology. Res J Pharm Technol. 2021;14(3):1729-1735. doi:10.5958/0974-360X.2021.00308.5
37.    Ghanbari R, Zarei M, Ebrahimpour A, Abdul-hamid A. Angiotensin-I Converting Enzyme ( ACE ) Inhibitory and Anti-Oxidant Activities of Sea Cucumber ( Actinopyga lecanora ) Hydrolysates. Published online 2015:28870-28885. doi:10.3390/ijms161226140
38.    Nugroho A, Harahap IA, Ardiansyah A, et al. Antioxidant and antibacterial activities in 21 species of Indonesian sea cucumbers. J Food Sci Technol. Published online 2021. doi:10.1007/s13197-021-05007-6
39.    Ahmed F, Fanning K, Netzel M, Schenk PM. Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation. Published online 2015. doi:10.1007/s00253-015-6792-x
40.    Kreck M, Kürbel P, Ludwig M, Paschold PJ, Dietrich H. Identification and quantification of carotenoids in pumpkin cultivars (Cucurbita maxima L.) and their juices by liquid chromatography with ultraviolet-diode array detection. J Appl Bot Food Qual. 2006;80(2):93-99.
41.    Vulgaris C. RESEARCH ARTICLE FTIR ANALYSIS OF Β CAROTENE PRODUCED FROM CHLORELLA VULGARIS AS-3. Published online 2018.
42.    Rubio BK, Parrish SM, Yoshida W, Schupp PJ, Schils T, Williams PG. Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Lett. 2010;51(51):6718-6721. doi:10.1016/j.tetlet.2010.10.062
43.    Mahadeva Rao US, Shanmuga Sundaram C, Sivakumar J. Isolation and characterization of phytochemical constituents and its antibacterial activity of brassica oleracea var acephala. Res J Pharm Technol. 2019;12(1):297-302. doi:10.5958/0974-360X.2019.00055.6
44.    Chen B, Long P, Sun Y, et al. The chemical profiling of loquat leaf extract by HPLC-DAD-ESI-MS and its effects on hyperlipidemia and hyperglycemia in rats induced by a high-fat and fructose diet. Food Funct. 2017;8(2):687-694. doi:10.1039/c6fo01578f
45.    Cerón MC, Campos I, Sánchez JF, Acién FG, Molina E, Fernández-Sevilla JM. Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem. 2008;56(24):11761-11766. doi:10.1021/jf8025875
46.    Dey A, Ragavan ML, Mandal SK, Das N. Isolation, identification and in vitro characterisation of probiotic yeast strains. Res J Pharm Technol. 2017;10(3):726-732. doi:10.5958/0974-360X.2017.00136.6
47.    Gopi K, Jayaprakashvel M. Endophytic Fungi from Halophytes and Their Antioxidant Potential. Res J Pharm Technol. 2017;10(11):4105. doi:10.5958/0974-360x.2017.00745.4
48.    Senthilkumar G, Madhanraj P, Panneerselvam A. Studies on DNA Extraction , Molecular Identification and Genetic Evolution of Trichoderma harzianum. Asian J Res Chem. 2011;4(8):1225-1231.
49.    Li Y, Liu Y, Liang J, Wang T, Sun M, Zhang Z. Gymnemic Acid Ameliorates Hyperglycemia through PI3K / AKT- and AMPK-Mediated Signaling Pathways in Type 2 Diabetes Mellitus Rats. Published online 2019. doi:10.1021/acs.jafc.9b04931
50.    Pandey A, Srivastava S, Kumar S. Bioresource Technology Isolation , screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy e ffl uent treatment : A sustainable approach. Bioresour Technol. 2019;293(June):121998. doi:10.1016/j.biortech.2019.121998
51.    Duong VT, Li Y, Nowak E, Schenk PM. Microalgae isolation and selection for prospective biodiesel production. Energies. 2012;5(6):1835-1849. doi:10.3390/en5061835
52.    Reda AIAS, Sapireddy VR, Nagah MAH, et al. Manipulating nutrient composition of microalgal growth media to improve biomass yield and lipid content of Micractinium pusillum. African J Biotechnol. 2012;11(96):16270-16276. doi:10.5897/ajb12.2628
53.    Murugan T, Rao USM. Screening of Biofuel Producing Microalgae from Different Fresh-Water Bodies around Chennai. Res J Sci …. 2011;3(6):343-345. https://www.researchgate.net/profile/Thiraviam_Murugan/publication/229122028_Screening_of_Biofuel_Producing_Microalgae_from_Different_Fresh-Water_Bodies_around_Chennai/links/0fcfd500580d393fdc000000/Screening-of-Biofuel-Producing-Microalgae-from-Different
54.    Xu F, Fan Y, Miao F, et al. Naphthylacetic acid and tea polyphenol application promote biomass and lipid production of nervonic acid-producing microalgae. Front Plant Sci. 2018;9(April):1-10. doi:10.3389/fpls.2018.00506
55.    Maadane A, Merghoub N, Ainane T, et al. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J Biotechnol. 2015;215:13-19. doi:10.1016/j.jbiotec.2015.06.400
56.    Priya SS, Sharmili AS, Anbumalarmathi J, Umamaheswari K.  Evaluation of Phytochemical Constituents, In vitro Antimicrobial, Antioxidant, FT-IR and GC-MS Studies of Leaves of Solanum torvum , Rhizome of Acorus calamus and Whole Plant of Mollugo pentaphylla . Res J Pharm Technol. 2017;10(2):592. doi:10.5958/0974-360x.2017.00117.2
57.    Fujii K, Imazato E, Nakashima H, Ooi O, Saeki A. Isolation of the non-fastidious microalga with astaxanthin-accumulating property and its potential for application to aquaculture. Aquaculture. 2006;261(1):285-293. doi:10.1016/j.aquaculture.2006.07.014
58.    Yuan C, Liu J, Fan Y, Ren X, Hu G, Li F. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol Biofuels. 2011;4:1-8. doi:10.1186/1754-6834-4-47
59.    Sun LY, Cui WJ, Chen KM. Two Mychonastes isolated from freshwater bodies are novel potential feedstocks for biodiesel production. Energy Sources, Part A Recover Util Environ Eff. 2018;40(12):1452-1460. doi:10.1080/15567036.2018.1477869
60.    Assunção MFG, Amaral R, Martins CB, et al. Screening microalgae as potential sources of antioxidants. J Appl Phycol. 2017;29(2):865-877. doi:10.1007/s10811-016-0980-7
61.    Saadaoui I, Cherif M, Rasheed R, et al. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. Algal Res. 2020;51(July):102021. doi:10.1016/j.algal.2020.102021
62.    Kreckhoff RL, Ngangi ELA, Undap SL, Kusen DJ. Crude extracts of Kappaphycus alvarezii algae cultivated in several seaweed production centers in North Sulawesi, Indonesia as immunostimulant. AACL Bioflux. 2019;12(2):678-686.
63.    Hu CC, Lin JT, Lu FJ, Chou FP, Yang DJ. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem. 2008;109(2):439-446. doi:10.1016/j.foodchem.2007.12.043
64.    Baz FK El, Hussein RA, Mahmoud K. Cytotoxic activity of carotenoid rich fractions from Haematococcus pluvialis and Dunaliella salina microalgae and the identification of the phytoconstituents using LC ‐ DAD / ESI ‐ MS. 2018;(August 2017):298-304. doi:10.1002/ptr.5976

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available