ABSTRACT:
Background: The global threat of COVID-19 outbreak and on the 11 March 2020, WHO acknowledged that the virus would likely spread to all countries across the globe and declared the coronavirus outbreak a pandemic which is the fifth pandemic since 20 century and this has brought human lives to a sudden and complete lockdown and the confirmed cases of this disease and deaths continue to rise in spite of people around the world are taking important actions to mitigate and decrease transmission and save lives. Objectives: To assess the effect of exercise and physical activity on the immunity against COVID-19. Methods: Collected electronic databases including (Medline, EMBASE, Google Scholar, PubMed and Web of Science) were searched without language restrictions to recognize all studies and reports on sports and physical activity related to COVID-19 due to alterations in the immune parameters. Results: Physical activity including sports and exercise induces obvious immune responses in many elements of the immune system whether transient or permanent that had a role in defense reaction against infection like COVID-19. This mediated through the nervous and endocrine systems that play a key role in determining exercise induced immune changes. Massive impact sports have on every aspect of our lives. Conclusions: Mild to moderate sports leads to stimulate an immune system that can subside COVID-19 infection and keep each other safe until this outbreak subsides and life is back to being greater than ever.
Cite this article:
Batool Mutar Mahdi. Physical human Activity, Immunity and COVID-19. Research Journal of Pharmacy and Technology 2023; 16(1):278-6. doi: 10.52711/0974-360X.2023.00051
Cite(Electronic):
Batool Mutar Mahdi. Physical human Activity, Immunity and COVID-19. Research Journal of Pharmacy and Technology 2023; 16(1):278-6. doi: 10.52711/0974-360X.2023.00051 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-51
REFERENCES:
1. Lu H, Stratton CW, Tang. YW. Outbreak of pneumonia of unknown etiology in wuhan China: the mystery and the miracle, J. Med. Virol.2020;92: 401–402,
2. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M.U.G. Kraemer, KK. .Pneumonia of unknown etiology in wuhan, China: potential for international spreadvia commercial air travel, J. Trav. Med.2020 , https://doi.org/10.1093/jtm/ taaa008.
3. Zhao S, Lin Q, Ran J, etal. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak, Int. J.Infect. Dis. : IJID : Off. Publ. Int. Soc. Infect. Dis. 2020;92 : 214–217,
4. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet . 2020;395: 565-574.
5. Huang C,Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet.2020; 395 :497–506,.
6. Nishiura H, Jung SM, Linton NM, Kinoshita R, Yang Y, Hayashi K, et al. The extent of transmission of novel coronavirus in wuhan, China, 2020, J. Clin. Med. 2020;9.
7. Bassetti M, Vena A, Roberto Giacobbe D. The Novel Chinese Coronavirus (2019-nCoV) Infections: challenges for fighting the storm, Eur. J. Clin. Invest.2020; e13209.
8. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak.J Autoimmun.2020; 109:102433.
9. Al-Shaibani A. Epidemiology of the domestic and repatriation (Covid-19) Infection in Al Najaf province , Iraq. J Fac Med Bagdad. 2020;62:13-19.
10. Ge H, Wang X, Yuan X, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis.2020; 39(6):1011-1019.
11. Gilat R, Cole BJ. (2020). COVID-19, Medicine, and Sports [published online ahead of print, 2020 Apr 11]. Arthrosc Sports Med Rehabil. 2(3):e175-e176.
12. Galib B. SARS-CoV-2(COVID-19). J Fac Med Bagdad .2020 ;61:91-93.
13. Woo PC, Huang Y, Lau SK, Yuen KY . Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2 (8): 1804–20.
14. Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (eds.). Coronaviruses. Methods in Molecular Biology. 1282. Springer. pp. 1–23.
15. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci. 2020;24(4):2006-2011.
16. Hassan M. Abbas HM and Nassir KF. Clinical evaluation of selected Pharmacological Treatments used for Coronavirus (COVID-19) pandemic. J Fac Med Baghdad .2020; 62:1-5.
17. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.
18. Mantlo, E.K., Bukreyeva, N., Maruyama, J., Paessler, S., and Huang, C. . Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection. Antiviral Res.Published online April 2020;29. https://doi.org/10.1016/j.antiviral.2020.104811.
19. Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Pere, H., Charbit,B., Bondet, V., Chenevier-Gobeaux, C., Breillat, P., et al. Impairedtype I interferon activity and exacerbated inflammatory responses in severeCovid-19 patients. medRxiv.2020; https://doi.org/10.1101/2020.04.19.20068015.
20. Hackbart, M., Deng, X., and Baker, S.C. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc. Nat. Acad. Sci. USA. 2020;117, 8094–8103.
21. Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer,Y., Koster, A.J., Mommaas, A.M., and Snijder, E.J. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol.2008; 6, e226.
22. Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E.J., Canard, B., and Decroly, E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog.2010; 6, e1000863.
23. Comar, C.E., Goldstein, S.A., Li, Y., Yount, B., Baric, R.S., and Weiss, S.R. Antagonism of dsRNA-Induced Innate Immune Pathways by NS4a and NS4b Accessory Proteins during MERS Coronavirus Infection. MBio.2019;10, 1–7.
24. Giamarellos-Bourboulis, E.J., Netea, M.G., Rovina, N., Akinosoglou, K., Antoniadou,A., Antonakos, N., Damoraki, G., Gkavogianni, T., Adami, M.-E., Katsaounou,P., et al. Complex Immune Dysregulation in COVID-19 PatientsWith Severe Respiratory Failure. Cell Host Microbe. 20202;17.
25. Song, C.-Y., Xu, J., He, J.-Q., and Lu, Y.-Q. COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients.medRxiv.2020.https://doi.org/10.1101/2020.03.05.20031906
26. Wilk, A.J., Rustagi, A., Zhao, N.Q., Roque, J., Martinez-Colon, G.J., McKechnie,J.L., Ivison, G.T., Ranganath, T., Vergara, R., Hollis, T., et al. A single-cell atlas of the peripheral immune response to severeCOVID19.medRxiv.2020.https://doi.org/10.1101/2020.0.17.20069930.
27. Amanat, F., and Krammer, F. ARS-CoV-2 Vaccines: Status Report.2020;52, 583–589.
28. Zheng, M., and Song, L. Novel antibody epitopes dominate the antigenicityof spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell. Mol.Immunol. 2020;17, 536–538.
29. Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G.,Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., et al. Innate Lymphoid Cells: 10 Years On. Cell. 2018;8: 1054–1066.
30. Chang, Y.J., Kim, H.Y., Albacker, L.A., Baumgarth, N., McKenzie, A.N., SmithD.E., Dekruyff, R.H., and Umetsu, D.T. Innate lymphoid cells mediateinfluenza-induced airway hyper-reactivity independently of adaptive immunity.Nat. Immunol.2011; 12: 631–638.
31. Nie S., Zhao, X., Zhao, K., Zhang, Z., Zhang, Z., and Zhang, Z. (2020). Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus disease (COVID-19): a retrospective study. medRxiv.2019. https://doi.org/ 10.1101/2020.03.24.20042283.
32. Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Li, M., Liu, Y.,Wang, G., et al. (2020). Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease (COVID-19). Front. Immunol.2019. Publishedonline. 1, https://doi.org/10.3389/fimmu.2020.00827.
33. Shiow, L.R., Rosen, D.B., Brdickova´ , N., Xu, Y., An, J., Lanier, L.L., Cyster, J.G., and Matloubian, M. CD69 acts downstream of interferon-alpha/ beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature.2006; 440: 540–544.
34. Giamarellos-Bourboulis, E.J., Netea, M.G., Rovina, N., Akinosoglou, K., Antoniadou,A., Antonakos, N., Damoraki, G., Gkavogianni, T., Adami, M.-E., Katsaounou,P., et al. Complex Immune Dysregulation in COVID-19 PatientsWith Severe Respiratory Failure. Cell Host Microbe.2020. Published online.April 17, https://doi.org/10.1016/j.chom.2020.04.009.
35. Li, C.K.-F., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., Tang, X., Temperton,N.J., Weiss, R.A., Brenchley, J.M., et al. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008;181: 5490–5500.
36. Ng, O.-W., Chia, A., Tan, A.T., Jadi, R.S., Leong, H.N., Bertoletti, A., and Tan,Y.-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016: 34: 2008–2014.
37. Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F., Hippenstiel,S., Dingeldey, M., Kruse, B., Fauchere, F., et al. Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. .medRxiv.2020.https://doi.org/10.1101/2020.04.17.20061440.
38. Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., Xie, C., Ma, K., Shang, K.,Wang, W., et al. Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China. Clin. Infect. Dis.2020. Published online March 12. https://doi.org/10.1093/cid/ciaa248.
39. Guo, C., Li, B., Ma, H., Wang, X., Cai, P., Yu, Q., Zhu, L., Jin, L., Jiang, C., Fang, J., et al. Tocilizumab treatment in severe COVID-19 patients attenuates the inflammatory storm incited by monocyte centric immune interactions revealed by single-cell analysis. bioRxiv. 2020.https://doi.org/10.1101/2020.04.08.029769.
40. Thevarajan, I., Nguyen, T.H.O., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C.E., Jia, X., Nicholson, S., Catton, M., Cowie, B., et al. Reads of Concomitant Immune Responses Prior to Patient Recovery: A Case Reportof Non-Severe COVID-19. Nat. Med.2020; 26: 453–455.
41. Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., Sun, R., Tian, Z., Xu, X., and Wei, H. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl. Sci. Rev. 2020.Published online March 13, https://doi.org/10.1093/nsr/nwaa041.
42. Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., Xu, Y., and Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020;17: 533–535.
43. Li, C.K.-F., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., Tang, X., Temperton, N.J., Weiss, R.A., Brenchley, J.M., et al. T cell responses to whole SARS coronavirus in humans. J. Immunol.2008; 181: 5490–5500.
44. Huang, A.T., Garcia-Carreras, B., Hitchings, M.D.T., Yang, B., Katzelnick, L.,Rattigan, S.M., Borgert, B., Moreno, C., Solomon, B.D., Rodriguez-Barraquer,I., et al. A systematic review of antibody mediated immunity to coronaviruses:antibody kinetics, correlates of protection, and association of antibodyresponses with severity of disease. medRxiv.2020. https://doi.org/10.1101/2020.04.14.20065771.
45. Okba, N.M.A., M€uller, M.A., Li, W., Wang, C., GeurtsvanKessel, C.H., Corman,V.M., Lamers, M.M., Sikkema, R.S., de Bruin, E., Chandler, F.D., et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg. Infect. Dis. 2020;26,https://doi.org/10.3201/eid2607.200841.
46. To, K.K.-W., Tsang, O.T.-Y., Leung, W.-S., Tam, A.R., Wu, T.-C., Lung, D.C., Yip, C.C.-Y., Cai, J.-P., Chan, J.M.-C., Chik, T.S.-H., et al. Temporalprofiles of viral load in posterior oropharyngeal saliva samples and serum antibodyresponses during infection by SARS-CoV-2: an observational cohortstudy. Lancet Infect. Dis. 2020;20: 565–574.
47. Ju, B., Zhang, Q., Ge, X., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., and Song, S. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020.Published online May 26. https://doi.org/10.1038/s41586-020-2380-z.
48. Mutar Mahdi B. COVID-19 type III hypersensitivity reaction [published online ahead of print, 2020 Apr 23]. Med Hypotheses. 2020;140:109763. doi:10.1016/j.mehy.2020.109763.
49. Liu, W., Fontanet, A., Zhang, P.H., Zhan, L., Xin, Z.T., Baril, L., Tang, F., Lv, H.,and Cao, W.C. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis.2006;193: 792–795.
50. Adams, E.R., Anand, R., Andersson, M.I., Auckland, K., Baillie, J.K., Barnes, E., Bell, J., Berry, T., Bibi, S., Carroll, M., et al. Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. medRxiv.2020. https://doi.org/10.1101/2020.04.15.20066407
51. Okba, N.M.A., M€uller, M.A., Li, W., Wang, C., GeurtsvanKessel, C.H., Corman,V.M., Lamers, M.M., Sikkema, R.S., de Bruin, E., Chandler, F.D., et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg. Infect. Dis.2020; 26. https://doi.org/10.3201/eid2607.200841 .
52. Taylor, A., Foo, S.-S., Bruzzone, R., Dinh, L.V., King, N.J.C., and Mahalingam,S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol. Rev. 2015;268: 340–364.
53. Zhao, J., Yang, Y., Huang, H., Li, D., Gu, D., Lu, X., Zhang, Z., Liu, L., Liu, T., Liu, Y., et al. Relationship between the ABO Blood Group and theCOVID-19 Susceptibility. medRxiv. 2020.https://doi.org/10.1101/2020.03.11.20031096.
54. Wang W, Zhang W, Zhang J, He J, Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA. 2020;96(2):194-196. doi:10.1111/tan.13941.
55. Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341-342. doi:10.1038/s41574-020-0364-6.
56. Phillipou A, Meyer D, Neill E, et al. Eating and exercise behaviors in eating disorders and the general population during the COVID-19 pandemic in Australia: Initial results from the COLLATE project. Int J Eat Disord. 2020;53(7):1158-1165. doi:10.1002/eat.23317
57. Peake J. (2013). Interrelations between aute and chronic stress and the immune and endocrine systems. In: Endocrinology of Physical Activity and Sport, edited by Constantini N and Hackney A. New York: Springer, p.258–280. doi:10.1007/978-1-62703-314-5_15.
58. Shephard RJ, Verde TJ, Thomas SG, Shek P. Physical activity and the immune system. Can J Sport Sci.1991; 16: 163-85.
59. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):1077-1087. doi:10.1152/japplphysiol.00622.2016
60. Pedersen BK, Rohde T, Ostrowski K. Recovery of the immune system after exercise. Acta Physiol Scand .1998;162: 325–332.
61. Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise.J Appl Physiol. 1985;122(3):559-570.
62. Verde TJ, Thomas S. Shek PN, Shephard RJ. Responses of lymphocyte subsets, mitogen-stimulated cell proliferation rates and immunoglobulin synthesis to vigorous exercise in the well-trained athlete. Clin J Sports Med. 1998;2: 87-92.
63. Zimmer P, Schenk A, Kieven M, et al. Exercise induced alterations in NK-cell cytotoxicity - methodological issues and future perspectives. Exerc Immunol Rev.2017; 23:66-81.
64. Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103(2):693-699.
65. Hanson PG, Flaherty DK. Immunological responses to training in conditioned runners. Clin Sci.1981; 60: 225-8.
66. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr.2020; 87(4):281-286
67. Bower JE, Irwin MR. Mind-body therapies and control of inflammatory biology: A descriptive review. Brain Behav Immun.2016; 51:1-11.
68. Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?. Exerc Immunol Rev. 2012;18:42-97.
69. Witard OC, Turner JE, Jackman SR, Tipton KD, Jeukendrup AE,Kies AK, Bosch JA. High-intensity training reduces CD8- T-cell redistribution in response to exercise. Med Sci Sports Exerc .2012; 44: 1689–1697.
70. Burtscher J, Burtscher M, Millet GP. Indoor isolation, stress and physical inactivity: vicious circles accelerated by Covid-19? [published online ahead of print, 2020 May 6]. Scand J Med Sci Sports.2020. 10.1111/sms.13706. doi:10.1111/sms.13706.
71. Nieman DC, Nehlsen-Cannarella SL.(1992). Exercise and infection. In: Watson RR and Eisinger M, eds. Exercise and Disease, Boca Ration, Florida, USA: CRC Press, 121-48.
72. Engebretsen, L., Soligard, T., Steffen, K., Alonso, J.M., Aubry, M., Budgett,R., et al. Sports injuries and illnesses during the London Summer Olympic Games 2012. Br. J. Sports Med. 2013;47 (7), 407-414.
73. Gleeson, M., Walsh, N.P. The bases expert statement on exercise, immunity, and infection. J. Sports Sci. 2012;30, 321-324.
74. Cox, A.J., Gleeson, M., Pyne, D.B., Callister, R., Hopkins, W.G.,Fricker, P.A. Clinical and laboratory evaluation of upper respiratory symptoms in elite athletes. Clin. J. Sport Med. 2008;18,438-445.
75. Gleeson, M., Pyne, D.B., Austin, J.P., Lynn Francis, J., Clancy, R.L.,McDonald, W.A., et al. Epstein_Barr virus reactivation and upper-respiratory illness in elite swimmers. Med. Sci. Sports Exerc.2002;34, 411-417.
76. Pillay L, Janse van Rensburg DCC, Jansen van Rensburg A, et al. Nowhere to hide: The significant impact of coronavirus disease 2019 (COVID-19) measures on elite and semi-elite South African athletes. J Sci Med Sport. 2020;23(7):670-679.
77. Peters, E.M. Post race upper respiratory tract ‘infections’ in ultramarathoners- Infection, allergy or inflammation? S. Afr. J. Sports Med.2004; 16: 3-9.
78. Hoffmann, D., Wolfarth, B., Horterer, H.G., Halle, M., Reichhuber, C.,Nadas, K., et al. Elevated Epstein_Barr virus loads and lower antibody titers in competitive athletes. J. Med. Virol.2010; 82: 446-451.
79. Shephard, R.J. Cytokine responses to physical activity, with particular reference to IL-6: sources, actions, and clinical implications.Crit. Rev. Immunol.2002; 22: 165-182.
80. Jurado A, Martín MC, Abad-Molina C, et al. COVID-19: age, Interleukin-6, C-reactive protein, and lymphocytes as key clues from a multicentre retrospective study. Immun Ageing. 2020;17:22. Published 2020 Aug 14. doi:10.1186/s12979-020-00194-w
81.Yousif, W. I. COVID-19 and Alimentary Tract: Current Evidence and Recent Recommendations. AL-Kindy College Medical Journal, 2021;17(2),62–72. https://doi.org/10.47723/kcmj.v17i2