Author(s):
Thanh-Tuan Huynh, Thi-Do Quyen Le, Thanh-Hoa Vo, Kieu-Minh Le, Thanh-Chi Hoang, Thi-Kim Ly Bui
Email(s):
tuanht@hcm.tahospital.vn , drquyen2003@gmail.com , 339107005@tmu.edu.tw , lkminh@ump.edu.vn , chiht@tdmu.edu.vn , lybtk@tdmu.edu.vn
DOI:
10.52711/0974-360X.2023.00045
Address:
Thanh-Tuan Huynh1, Thi-Do Quyen Le2, Thanh-Hoa Vo3, Kieu-Minh Le4, Thanh-Chi Hoang5, Thi-Kim Ly Bui6*
1Center for Training and Scientific Research, Tam Anh General Hospital, Ho Chi Minh City, Vietnam.
2Cho Ray Hospital, Ho Chi Minh City, Vietnam.
3College of Pharmacy, Taipei medical university, Taipei, Taiwan.
4enter for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam.
5Department of Medicine and Pharmacy, Thu Dau Mot University, Binh Duong Province.
6Department of Medicine and Pharmacy, Thu Dau Mot University, Binh Duong Province.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Liver cancer is one of the most common cancers, accounting for the sixth-highest number of new cases and the third-highest number of deaths. Sorafenib is a well-known targeted therapy for the treatment of liver cancer. Sorafenib's therapeutic use has also been linked to side effects such as diarrhea, hypertension, and skin toxicity. As a result, combining Sorafenib with other therapeutic agents is required to avoid unwanted side effects. In this study, we tried to test the combination effect of Sorafenib and Curcuma aromatica extract. The cytotoxic, migration, and colony assays were used to investigate the conjugated effect of C. aromatica extract and Sorafenib on liver cancer cell growth inhibition. At the same Sorafenib concentration, the more C. aromatica extract supplemented, the higher the cell death rate, with a statistically significant difference. To assess the relative potency of the combination, an isobologram model integrated into the CalcuSyn software was used. All of the data points were located in a synergistic area below the additive line, according to the schematic isobologram and CI distribution chart. The results indicated that the effect of sorafenib and C. aromatica was synergistic. C. aromatica extract could be used to help treat liver cancer when used with sorafenib.
Cite this article:
Thanh-Tuan Huynh, Thi-Do Quyen Le, Thanh-Hoa Vo, Kieu-Minh Le, Thanh-Chi Hoang, Thi-Kim Ly Bui. Evaluation of the Synergistic effect of Curcuma aromatica in combination with Sorafenib on a hepatoblastoma cell line in vitro. Research Journal of Pharmacy and Technology 2023; 16(1):245-9. doi: 10.52711/0974-360X.2023.00045
Cite(Electronic):
Thanh-Tuan Huynh, Thi-Do Quyen Le, Thanh-Hoa Vo, Kieu-Minh Le, Thanh-Chi Hoang, Thi-Kim Ly Bui. Evaluation of the Synergistic effect of Curcuma aromatica in combination with Sorafenib on a hepatoblastoma cell line in vitro. Research Journal of Pharmacy and Technology 2023; 16(1):245-9. doi: 10.52711/0974-360X.2023.00045 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-45
REFERENCES:
1. Ma, X., and Yu, H. Global burden of cancer. The Yale journal of biology and medicine. 2006; 79(3-4): 85-94.
2. Sung, H., Ferlay, J., and Siegel, R. L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. 2021; 71(3): 209-249. ^10.3322/caac.21660.
3. Allan, B. J., Parikh, P. P., Diaz, S., Perez, E. A., Neville, H. L., and Sola, J. E. Predictors of survival and incidence of hepatoblastoma in the paediatric population. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2013; 15(10): 741-746. ^10.1111/hpb.12112.
4. Pham, T., Bui, L., Kim, G., Hoang, D., Tran, T., and Hoang, M. Cancers in Vietnam-Burden and Control Efforts: A Narrative Scoping Review. Cancer control : journal of the Moffitt Cancer Center. 2019; 26(1): 1073274819863802-1073274819863802. ^10.1177/1073274819863802.
5. Liu, C.-Y., Chen, K.-F., and Chen, P.-J. Treatment of Liver Cancer. Cold Spring Harbor perspectives in medicine. 2015; 5(9): a021535-a021535. ^10.1101/cshperspect.a021535.
6. Mohamed Zerein Fathima, T.S. Shanmugarajan, S. Satheesh Kumar, and Yadav., B. V. V. N. Comparative in Silico Docking Studies of Hinokitiol with Sorafenib and Nilotinib against Proto-Oncogene Tyrosine-Protein Kinase(ABL1) and Mitogen-activated Protein Kinase (MAPK) to Target Hepatocellular Carcinom. Research J. Pharm. and Tech. 2017; 10(1): 257-262.
7. Tang, W., Chen, Z., Zhang, W., Cheng, Y., Zhang, B., Wu, F., Wang, Q., et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduction and Targeted Therapy. 2020; 5(1): 87. ^10.1038/s41392-020-0187-x.
8. Abdel-Rahman, O., and Lamarca, A. Development of sorafenib-related side effects in patients diagnosed with advanced hepatocellular carcinoma treated with sorafenib: a systematic-review and meta-analysis of the impact on survival. Expert Review of Gastroenterology and Hepatology. 2017; 11(1): 75-83. ^10.1080/17474124.2017.1264874.
9. Sun, W., Sanderson, P. E., and Zheng, W. Drug combination therapy increases successful drug repositioning. Drug discovery today. 2016; 21(7): 1189-1195. ^10.1016/j.drudis.2016.05.015.
10. Ema Pristi Yunita, Ni Luh Putu Gita Asriyanti, and Gunawan., A. Evaluation of Drug Combinations’ Effectiveness in Hyperkalemia Management of Chronic Kidney Disease Patients. Research Journal of Pharmacy and Technology. 2022; 15(1): 6-10.
11. Marsh, A. M., Lo, L., Cohen, R. A., and Feusner, J. H. Sorafenib and bevacizumab for recurrent metastatic hepatoblastoma: stable radiographic disease with decreased AFP. Pediatr Blood Cancer. 2012; 59(5): 939-940. ^10.1002/pbc.24171.
12. Eicher, C., Dewerth, A., Thomale, J., Ellerkamp, V., Hildenbrand, S., Warmann, S. W., Fuchs, J., et al. Effect of sorafenib combined with cytostatic agents on hepatoblastoma cell lines and xenografts. British journal of cancer. 2013; 108(2): 334-341. ^10.1038/bjc.2012.539.
13. Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ali, B., Shah, S. A., and Khalil, A. T. Plant-derived anticancer agents: A green anticancer approach. Asian Pacific Journal of Tropical Biomedicine. 2017; 7(12): 1129-1150. ^https://doi.org/10.1016/j.apjtb.2017.10.016.
14. Dibyajyoti Saha, and Paul, S. Cytotoxic Activity of Methanolic Extract of Alpinia conchigera Griff (Family: Zingiberaceae). Asian J. Pharm. Res. 2012; 2(2): 86-88.
15. Dibyajyoti Saha, and Paul., S. Cytotoxic Activity of Methanolic Extract of Plumbago indica L. (Family: Plumbaginaceae). Asian J. Pharm. Tech. 2012; 2(2): 59-61.
16. Akshay R. Yadav, and Mohite, S. K. Anticancer Activity of Psidium guajava Leaf Extracts on Breast Cancer Cell Line. Res. J. Pharma. Dosage Forms and Tech. 2020; 12(4): 298-300.
17. Prafulla Sabale, Arjun Modi, and Sabale., V. Curcuma longa Linn. A Phytochemical and Phytopharmacological Review. Research J. Pharmacognosy and Phytochemistry. 2013; 5(2): 59-68.
18. Prakash S. Sukhramani , G. Vidyasagar, and Patel., P. M. In-vitro screening of Ficus racemosa for Anticancer activity. Research J. Pharmacognosy and Phytochemistry. 2013; 5(3): 119-122.
19. Chandrasekar. R, Sivagami. B, and Babu., M. N. A Pharmacoeconomic Focus on Medicinal Plants with Anticancer Activity. Res. J. Pharmacognosy and Phytochem. 2018; 10(1): 91-100.
20. Pant, N., Misra, H., and Jain, D. C. Phytochemical investigation of ethyl acetate extract from Curcuma aromatica Salisb. rhizomes. Arabian Journal of Chemistry. 2013; 6(3): 279-283. ^https://doi.org/10.1016/j.arabjc.2010.10.007.
21. Ahmad, S., Ali, M., Ansari, S., and Ahmed, F. Phytoconstituents from the rhizomes of Curcuma aromatica Salisb. Journal of Saudi Chemical Society. 2011; 15: 287-290. ^10.1016/j.jscs.2010.10.011.
22. Reena Parida, and Sanghamitra Nayak. Anti-proliferative activity of in vitro Zingiberaceae essential oil against Human cervical cancer (HeLa) cell line. Research Journal of Pharmacy and Technology. 2022; 15(1): 325-328.
23. Sangita P. Shirsat, Kaveri P. Tambe, Gayatri D. Patil, and Dhakad., G. G. Review on Curcuma aromatic as an Herbal medicine. Research Journal of Pharmacology and Pharmacodynamics. 2022; 14(2): 89-92.
24. Jaseela KP, Anjan Kumar, Veeresh Babu. D, and V.B., N. S. Studies on Anti-depressant and Anti-inflammatory Activities of Curcuma aromatica Rhizome in Experimental Animal Models. Asian J. Pharm. Res. 2016; 6(2): 79-86.
25. Jeon, W. Y., Lee, M. Y., Shin, I. S., Jin, S. E., and Ha, H. Curcuma aromatica Water Extract Attenuates Ethanol-Induced Gastritis via Enhancement of Antioxidant Status. Evid Based Complement Alternat Med. 2015; 2015: 582496. ^10.1155/2015/582496.
26. Panich, U., Kongtaphan, K., Onkoksoong, T., Jaemsak, K., Phadungrakwittaya, R., Thaworn, A., Akarasereenont, P., et al. Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis. Cell Biol Toxicol. 2010; 26(2): 103-116. ^10.1007/s10565-009-9121-2.
27. Li, Y., Shi, X., Zhang, J., Zhang, X., and Martin, R. C. G. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma. International journal of oncology. 2014; 44(2): 505-513. ^10.3892/ijo.2013.2184.
28. Wu, W.-Y., Xu, Q., Shi, L.-C., and Zhang, W.-B. Inhibitory effects of Curcuma aromatica oil on proliferation of hepatoma in mice. World journal of gastroenterology. 2000; 6(2): 216-219. ^10.3748/wjg.v6.i2.216.
29. Ashrafizadeh, M., Zarrabi, A., Hashemi, F., Moghadam, E. R., Hashemi, F., Entezari, M., Hushmandi, K., et al. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sciences. 2020; 256: 117984. ^https://doi.org/10.1016/j.lfs.2020.117984.
30. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990; 82(13): 1107-1112. ^10.1093/jnci/82.13.1107.
31. Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., and van Bree, C. Clonogenic assay of cells in vitro. Nature Protocols. 2006; 1(5): 2315-2319. ^10.1038/nprot.2006.339.
32. Jonkman, J. E. N., Cathcart, J. A., Xu, F., Bartolini, M. E., Amon, J. E., Stevens, K. M., and Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell adhesion and migration. 2014; 8(5): 440-451. ^10.4161/cam.36224.
33. Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.-F., de Oliveira, A. C., et al. Sorafenib in Advanced Hepatocellular Carcinoma. New England Journal of Medicine. 2008; 359(4): 378-390. ^10.1056/NEJMoa0708857.
34. Lang, L. FDA Approves Sorafenib for Patients With Inoperable Liver Cancer. Gastroenterology. 2008; 134(2): 379. ^10.1053/j.gastro.2007.12.037.
35. Kane, R. C., Farrell, A. T., Saber, H., Tang, S., Williams, G., Jee, J. M., Liang, C., et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006; 12(24): 7271-7278. ^10.1158/1078-0432.ccr-06-1249.
36. FDA Approves Another Thyroid Cancer Indication for Nexavar (Sorafenib). Oncology Times. 2013; 35(24).
37. Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., Chen, C., et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004; 64(19): 7099-7109. ^10.1158/0008-5472.can-04-1443.
38. Cascorbi, I. Drug interactions--principles, examples and clinical consequences. Deutsches Arzteblatt international. 2012; 109(33-34): 546-556. ^10.3238/arztebl.2012.0546.
39. Huang, R.-y., Pei, L., Liu, Q., Chen, S., Dou, H., Shu, G., Yuan, Z.-x., et al. Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Frontiers in Pharmacology. 2019; 10(1222). ^10.3389/fphar.2019.01222.
40. Bijnsdorp, I. V., Giovannetti, E., and Peters, G. J. Analysis of drug interactions. Methods Mol Biol. 2011; 731: 421-434. ^10.1007/978-1-61779-080-5_34.
41. Banasiak, D., Barnetson, A. R., Odell, R. A., Mameghan, H., and Russell, P. J. Comparison between the clonogenic, MTT, and SRB assays for determining radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line. Radiation Oncology Investigations. 1999; 7(2): 77-85. ^https://doi.org/10.1002/(SICI)1520-6823(1999)7:2<77::AID-ROI3>3.0.CO;2-M.
42. Hiraki, S., Ohnoshi, T., Numata, T., Kishimoto, N., Mori, K., Yonei, T., Yamashita, H., et al. Anticancer drug sensitivity by human tumor clonogenic assay. Acta Med Okayama. 1986; 40(5): 265-269. ^10.18926/amo/31931.
43. Fiebig, H. H., Maier, A., and Burger, A. M. Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer. 2004; 40(6): 802-820. ^10.1016/j.ejca.2004.01.009.
44. Salimath, G. T. a. B. P. Curcuma aromatica extract induces apoptosis and inhibits angiogenesis in Ehrlich Ascites Tumor cells in vivo. mySCIENCE. 2006; 1(1): 79-92.
45. Hu, B., Shen, K. P., An, H. M., Wu, Y., and Du, Q. Aqueous extract of Curcuma aromatica induces apoptosis and G2/M arrest in human colon carcinoma LS-174-T cells independent of p53. Cancer Biother Radiopharm. 2011; 26(1): 97-104. ^10.1089/cbr.2010.0853.
46. Rachmawati, H., Larasati, A., Adi, A. C., and Shegokar, R. (2020). Chapter 2 - Role of nanocarriers and their surface modification in targeting delivery of bioactive compounds. In R. Shegokar (Ed.), Nanopharmaceuticals (pp. 17-43): Elsevier.
47. Nahak, D. G., and Sahu, R. Evaluation in Comparative Antioxidant Activity of Curcuma longa and Curcuma aromatica. Natural Product: An Indian Journal. 2011.
48. Tomeh, M. A., Hadianamrei, R., and Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. International journal of molecular sciences. 2019; 20(5): 1033. ^10.3390/ijms20051033.
49. Zhang, C., Hao, Y., Wu, L., Dong, X., Jiang, N., Cong, B., Liu, J., et al. Curcumin induces apoptosis and inhibits angiogenesis in murine malignant mesothelioma. Int J Oncol. 2018; 53(6): 2531-2541. ^10.3892/ijo.2018.4569.
50. Wang, J.-b., Qi, L.-l., Zheng, S.-d., and Wu, T.-x. Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. Journal of Zhejiang University. Science. B. 2009; 10(2): 93-102. ^10.1631/jzus.B0820238.
51. Araveti, P. B., and Srivastava, A. Curcumin induced oxidative stress causes autophagy and apoptosis in bovine leucocytes transformed by Theileria annulata. Cell Death Discovery. 2019; 5(1): 100. ^10.1038/s41420-019-0180-8.
52. Vallianou, N. G., Evangelopoulos, A., Schizas, N., and Kazazis, C. Potential Anticancer Properties and Mechanisms of Action of Curcumin. Anticancer Research. 2015; 35(2): 645-651.
53. Ravi Chandra Sekhara Reddy Danduga, Phani Kumar Kola, and Matl, B. Anticancer activity of curcumin alone and in combination with piperine in Dalton lymphoma ascites bearing mice Indian Journal of Experimental Biology. 2020; 58: 181-189.
54. Du, Q., Hu, B., An, H. M., Shen, K. P., Xu, L., Deng, S., and Wei, M. M. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol Rep. 2013; 29(5): 1851-1858. ^10.3892/or.2013.2310.
55. Tan, B., and Me, N. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules. 2019; 24. ^10.3390/molecules24142527.
56. Ashrafizadeh, M., Zarrabi, A., Hashemi, F., Moghadam, E. R., Hashemi, F., Entezari, M., Hushmandi, K., et al. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci. 2020; 256: 117984. ^10.1016/j.lfs.2020.117984.
57. Alqahtani, A. M., Chidambaram, K., Pino-Figueroa, A., Chandrasekaran, B., Dhanaraj, P., and Venkatesan, K. Curcumin-Celecoxib: a synergistic and rationale combination chemotherapy for breast cancer. Eur Rev Med Pharmacol Sci. 2021; 25(4): 1916-1927. ^10.26355/eurrev_202102_25086.