Author(s):
Ni Komang Widiastuti, Ni Made Virginia, I Made Fery Yastawan
Email(s):
putripermatasari@undhirabali.ac.id
DOI:
10.52711/0974-360X.2023.00028
Address:
Ni Komang Widiastuti1, Ni Made Virginia1, I Made Fery Yastawan1,
Anak Agung Ayu Putri Permatasari1*, Putu Angga Wiradana1, I Gede Widhiantara1, Teguh Hari Sucipto2
1Study Program of Biology, Faculty of Health, Science, and Technology, University of Dhyana Pura, Kuta Utara 80361, Badung, Bali, Indonesia.
2Dengue Study Group, Institute of Tropical Disease, Universitas Airlangga, Kampus C, Mulyorejo, Surabaya 60286, East Java, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
In several societies, the development of traditional medicine employing plants to enhance medicinal formulations has been promoted as a valuable offering in therapeutic applications. Bali Province in Indonesia, which has a healthy culture until now, has a rich history of traditional medicine regarding the utilization of local plants. The purpose of this study was to determine the cytotoxicity of Erythrina lithosperma Miq leaf extract (ELLE) on Vero cells to gain knowledge of its potential as a standardized traditional medicine. A cytotoxicity test was performed on Vero cell lines grown on M119 medium with 10% FBS and incubated at 37°C in a CO2 incubator until confluent. Cells were collected and grown in 96 well microplates at a cell density of 2x104 cells/100mL/well at the start. After a 24-hour incubation period, extracts were subjected to concentrations ranging from 31.25 to 10,000µg/ml. Cell viability was determined using the MTT technique (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide). A one-way ANOVA test with a significance level of 5% was performed. Cell viability increased with decreasing concentration extracts used. There was no significant difference between concentrations of 500, 250, 125, 63, and 31µg/ml. A consistent and significant reduction occurred in cell proliferation added with very high extract concentrations. Empirically ELLE can be used as a traditional medicine for certain diseases, this experiment reduces the viability of Vero cells lines at very high concentrations. Overall, the findings of this study suggest that the investigated ELLE might be developed as a novel dietary component and traditional medicinal preparation for promoting human health.
Cite this article:
Ni Komang Widiastuti, Ni Made Virginia, I Made Fery Yastawan. Cytotoxicity Evaluation of Erythrina lithosperma Miq. Leaf Extract against Vero Cell Lines: In Vitro Study. Research Journal of Pharmacy and Technology 2023; 16(1):153-8. doi: 10.52711/0974-360X.2023.00028
Cite(Electronic):
Ni Komang Widiastuti, Ni Made Virginia, I Made Fery Yastawan. Cytotoxicity Evaluation of Erythrina lithosperma Miq. Leaf Extract against Vero Cell Lines: In Vitro Study. Research Journal of Pharmacy and Technology 2023; 16(1):153-8. doi: 10.52711/0974-360X.2023.00028 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-28
REFERENCES:
1. Rakesh SU, Salunkhe VR. Target Molecules as Medicines from Natural Origin. Res J Pharm Tech. 2009; 2(1):12–20.
2. Pandeya SN, Kumar R, Kumar A, Pathak AK. Antidiabetics Review on Natural Products. Res J Pharm Tech. 2010; 3(2):300–18.
3. Sharma BK. Synthetic and Natural Compounds as Anti-Cancer Agents-A Review. Asian J Res Chem [Internet]. 2017; 10(5):699. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ajrc&volume=10&issue=5&article=018
4. Ahmad R, Fatima A, Srivastava AN, Khan MA. Evaluation of apoptotic activity of Withania coagulans methanolic extract against human breast cancer and Vero cell lines. J Ayurveda Integr Med [Internet]. 2017 Jul; 8(3):177–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0975947616301760
5. Calixto JB. Twenty-five years of research on medicinal plants in Latin America. J Ethnopharmacol [Internet]. 2005 Aug; 100(1–2):131–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874105003612
6. Jener DGS, Alexs, Ro B, Alice FS, Carla SRP, Aristoacute teles G es N, et al. Antimicrobial activity of Agave sisalana. African J Biotechnol [Internet]. 2009 Nov 16; 8(22):6181–4. Available from: http://academicjournals.org/journal/AJB/article-abstract/E0E82B213858
7. Cos P, Hermans N, De Bruyne T, Apers S, Sindambiwe JB, Witvrouw M, et al. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1). Phytomedicine [Internet]. 2002 Jan; 9(1):62–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0944711304700835
8. Patini R, Mangino G, Martellacci L, Quaranta G, Masucci L, Gallenzi P. The effect of different antibiotic regimens on bacterial resistance: a systematic review. Antibiotics. 2020; 9(1).
9. Ben Sassi A, Harzallah-Skhiri F, Bourgougnon N, Aouni M. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Nat Prod Res [Internet]. 2008 Jan 10; 22(1):53–65. Available from: http://www.tandfonline.com/doi/abs/10.1080/14786410701589790
10. Polianciuc SI, Gurzău AE, Kiss B, Ștefan MG, Loghin F. Antibiotics in the environment: causes and consequences. Med Pharm Reports [Internet]. 2020 Jul 29; Available from: https://medpharmareports.com/index.php/mpr/article/view/1742
11. Permatasari AAAP, Rosiana IW, Wiradana PA, Lestari MD, Widiastuti NK, Kurniawan SB, et al. Extraction and characterization of sodium alginate from three brown algae collected from Sanur Coastal Waters, Bali as biopolymer agent. Biodiversitas J Biol Divers. 2022; 23(3):1655–63.
12. Rahman AA, Firmansyah R, Setyabudi L. Antibacterial Activity of Ethanol Extract of Dadap Serep (Erythrina lithosperma Miq.) Leaf Against Escherichia coli Growth. Pharmacoscript. 2019; 1(1).
13. Talla E, Fotsing MCD, Ismaila MB, Tata CM, Ikhile MI, Rhyman L, et al. Density functional theory studies of Hypaphorine from Erythrina mildbraedii and Erythrina addisoniae: structural and biological properties. SN Appl Sci [Internet]. 2020 Mar 17; 2(3):428. Available from: http://link.springer.com/10.1007/s42452-020-2228-z
14. Phukhatmuen P, Meesakul P, Suthiphasilp V, Charoensup R, Maneerat T, Cheenpracha S, et al. Antidiabetic and antimicrobial flavonoids from the twigs and roots of Erythrina subumbrans (Hassk.) Merr. Heliyon [Internet]. 2021 Apr; 7(4):e06904. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405844021010070
15. Tuenter E, Zarev Y, Matheeussen A, Elgorashi E, Pieters L, Foubert K. Antiplasmodial prenylated flavonoids from stem bark of Erythrina latissima. Phytochem Lett [Internet]. 2019 Apr; 30:169–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1874390018306797
16. Fahmy NM, Al-Sayed E, Michel HE, El-Shazly M, Singab ANB. Gastroprotective effects of Erythrina speciosa (Fabaceae) leaves cultivated in Egypt against ethanol-induced gastric ulcer in rats. J Ethnopharmacol [Internet]. 2020 Feb; 248:112297. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874119325656
17. Zarev Y, Naessens T, Theunis M, Elgorashi E, Apers S, Ionkova I, et al. In vitro antigenotoxic activity, in silico ADME prediction and protective effects against aflatoxin B1 induced hepatotoxicity in rats of an Erythrina latissima stem bark extract. Food Chem Toxicol [Internet]. 2020 Jan; 135:110768. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278691519305587
18. Hikita K, Saigusa S, Takeuchi Y, Matsuyama H, Nagai R, Kato K, et al. Induction of enantio-selective apoptosis in human leukemia HL-60 cells by (S)-erypoegin K, an isoflavone isolated from Erythrina poeppigiana. Bioorg Med Chem [Internet]. 2020 Jun; 28(11):115490. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968089620303114
19. Hikita K, Yamakage Y, Okunaga H, Motoyama Y, Matsuyama H, Matsuoka K, et al. (S)-Erypoegin K, an isoflavone isolated from Erythrina poeppigiana, is a novel inhibitor of topoisomerase IIα: Induction of G2 phase arrest in human gastric cancer cells. Bioorg Med Chem [Internet]. 2021 Jan; 30:115904. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968089620307343
20. Widhiantara, I.G.; Jawi IM. Phytochemical composition and health properties of Sembung plant (Blumeabalsamifera): A review. Vet World. 2021; 14(5):1185–96.
21. Kuntjoro M, Prasetyo EP, Cahyani F, Kamadjaja MJK, Hendrijantini N, Laksono H, et al. Lipopolysaccharide’s cytotoxicity on human umbilical cord mesenchymal stem cells. Pesqui Bras Odontopediatria Clin Integr. 2020; 20:1–7.
22. Pires CW, Botton G, Cadoná FC, Machado AK, Azzolin VF, da Cruz IBM, et al. Induction of cytotoxicity, oxidative stress and genotoxicity by root filling pastes used in primary teeth. Int Endod J [Internet]. 2016 Aug; 49(8):737–45. Available from: https://onlinelibrary.wiley.com/doi/10.1111/iej.12502
23. Isnansetyo A, Istiqomah I, Widaningroem R, Triyanto RA, Safia RY, Senny H. Toxicity Test for Evaluating Food Safety of New Edible Seaweeds, Enteromorpha sp. and Laurencia sp. J Perikan Univ Gadjah Mada. 2019; 21(2):73–38.
24. Hendrijantini N, Kresnoadi U, Salim S, Agustono B, Retnowati E, Syahrial I, et al. Study Biocompatibility and Osteogenic Differentiation Potential of Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) with Gelatin Solvent. J Biomed Sci Eng [Internet]. 2015; 08(07):420–8. Available from: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jbise.2015.87039
25. Isnansetyo A, Kamei Y. MC21-A, a Bactericidal Antibiotic Produced by a New Marine Bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30 T , against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother [Internet]. 2003 Feb; 47(2):480–8. Available from: https://journals.asm.org/doi/10.1128/AAC.47.2.480-488.2003
26. Muhammad Ansori AN, Fadholly A, Proboningrat A, Hayaza S, Kuncoroningrat Susilo RJ, Naw SW, et al. In Vitro Antiviral Activity of Pinus merkusii (Pinaceae) Stem Bark and Cone against Dengue Virus Type-2 (DENV-2). Res J Pharm Technol [Internet]. 2021 Jul 19; 3705–8. Available from: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-38
27. Afagnigni AD, Nyegue MA, Djova SV, Etoa F-X. LC-MS Analysis, 15-Lipoxygenase Inhibition, Cytotoxicity, and Genotoxicity of Dissotis multiflora (Sm) Triana ( Melastomataceae ) and Paullinia pinnata Linn ( Sapindaceae ). J Trop Med [Internet]. 2020 Feb 18; 2020:1–8. Available from: https://www.hindawi.com/journals/jtm/2020/5169847/
28. Omokhua AG, Abdalla MA, Van Staden J, McGaw LJ. A comprehensive study of the potential phytomedicinal use and toxicity of invasive Tithonia species in South Africa. BMC Complement Altern Med [Internet]. 2018 Dec 3; 18(1):272. Available from: https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-018-2336-0
29. Ogbole OO, Segun PA, Adeniji AJ. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern Med [Internet]. 2017 Dec 22; 17(1):494. Available from: https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-017-2005-8
30. Vijayarathna S, Sasidharan S. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pac J Trop Biomed [Internet]. 2012 Oct; 2(10):826–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2221169112602378
31. Chauhan R, D’Souza HL, Shabnam R, Abraham J. Phytochemical and Cytotoxicity Analysis of Seeds and Leaves of Adenanthera pavonina. Res J Pharm Technol [Internet]. 2015; 8(2):198. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=2&article=016
32. Devi DM, Banu N. Anti-Proliferative activity of Chlorophyllin from Phyllanthus Emblica L. against MCF-7 and Vero Cell line. Res J Pharm Technol [Internet]. 2017; 10(2):516. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=2&article=030
33. ISO 10993-5. Biological Evaluation of Medical Devices – Part 5: Test for in vitro cytotoxicity, International Organization for Standardization. Geneva, Switzerland; 2009.
34. Njeru SN, Obonyo MA, Nyambati SO, Ngari SM. Antimicrobial and cytotoxicity properties of the crude extracts and fractions of Premna resinosa (Hochst.) Schauer (Compositae): Kenyan traditional medicinal plant. BMC Complement Altern Med [Internet]. 2015 Dec 25; 15(1):295. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-015-0811-4
35. Widhiantara IG, Permatasari AAAP, Rosiana IW, Wiradana PA, Widiastini LP, Jawi IM. Antihypercholesterolemic and Antioxidant Effects of Blumea balsamifera L. Leaf Extracts to Maintain Luteinizing Hormone Secretion in Rats Induced by High-Cholesterol Diets. Indones Biomed J [Internet]. 2021 Dec 31; 13(4):396–402. Available from: https://inabj.org/index.php/ibj/article/view/1694
36. Nisa U, Astana PRW, Kuncoro H. The effect of antihypertensive herb formula of Indonesian traditional medicines against serum uric acid levels in mild Hypertensive patients. Res J Pharm Technol [Internet]. 2021; 14(1):254–8. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=14&issue=1&article=045
37. Kumar PK, Govindasamy K, Kumaresan G, Raj NS. A Critical Review on Traditional Medicines, Ayurvedic Herbs and fruits in Treatment of Cardiovascular Diseases. Res J Pharm Technol [Internet]. 2020; 13(7):3480. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=13&issue=7&article=077
38. Mulla SI, Shah RR, Mohite SA, Patel NR. Antibacterial Activity of Some Traditional Plants. Res J Pharm Technol [Internet]. 2018; 11(2):766. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=2&article=066
39. Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Álvarez-Muro T, Lozano A, et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J [Internet]. 2017 Dec; 50:e19–30. Available from: https://onlinelibrary.wiley.com/doi/10.1111/iej.12751
40. Takano YS, Harmon B V., Kerr JFR. Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: A study using electron microscopy and DNA gel electrophoresis. J Pathol [Internet]. 1991 Apr; 163(4):329–36. Available from: https://onlinelibrary.wiley.com/doi/10.1002/path.1711630410
41. Nguyen ML, Gennis E, Pena KC, Blaho JA. Comparison of HEp-2 and Vero Cell Responses Reveal Unique Proapoptotic Activities of the Herpes Simplex Virus Type 1 α0 Gene Transcript and Product. Front Microbiol [Internet]. 2019 May 8; 10. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.00998/full
42. Arthanari S, Vanitha J, Krishnaswami V, Renukadevi P, Deivasigamani K, De Clercq E. In vitro antiviral and cytotoxic screening of methanolic extract of Cassia auriculata flowers in HeLa, Vero, CRFK and HEL cell lines. Drug Invent Today [Internet]. 2013; 5(1):28–31. Available from: http://dx.doi.org/10.1016/j.dit.2013.03.001
43. Anggi V, Adikusuma W. Total Antioxidant and In-Vitro Cytotoxic of Abelmoschus Manihot (L.) Medik from palu of Central Sulawesi and Doxorubicin on 4T1 cells line and Vero Cells. Res J Pharm Technol [Internet]. 2019; 12(11):5472. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=12&issue=11&article=061
44. Jainab NH, Raja MKMM. In Silico Molecular Docking Studies on the Chemical Constituents of Clerodendrum phlomidis for its Cytotoxic Potential against Breast Cancer Markers. Res J Pharm Technol [Internet]. 2018; 11(4):1612. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=4&article=064
45. Shanmugapriya E, Ravichandiran V, Aanandhi MV. Molecular docking studies on naturally occurring selected flavones against protease enzyme of Dengue virus. Res J Pharm Technol [Internet]. 2016; 9(7):929. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=9&issue=7&article=035
46. Suganya J, Viswanathan T, Radha M, Marimuthu N. In silico Molecular Docking studies to investigate interactions of natural Camptothecin molecule with diabetic enzymes. Res J Pharm Technol [Internet]. 2017; 10(9):2917. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=9&article=015
47. Zadorozhnii P V., Kiselev V V., Titova AE, Kharchenko A V., Pokotylo IO, Okhtina O V. Molecular Docking Studies of N -5-Aryl-1, 3, 4-oxadiazolo-2, 2-dichloroacetamidines as Inhibitors of Enoyl-ACP Reductase Mycobacterium tuberculosis. Res J Pharm Technol [Internet]. 2017; 10(4):1091. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=4&article=025