Author(s):
Gul-e-Saba Chaudhry, Thirukanthan CS, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM
Email(s):
gul.saba@umt.edu.my/sababiochem@gmail.com
DOI:
10.52711/0974-360X.2023.00002
Address:
Gul-e-Saba Chaudhry1*, Thirukanthan CS1, Nor Atikah Mohamed Zin1, Yeong Yik Sung1 Tengku Sifzizul Tengku Muhammad1, Effendy AWM1,2*
1Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.
2Faculty of Fisheries and Food Science, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2023
ABSTRACT:
Fish scales are a good source of chitin and collagen that can be used in various cosmetic, biomedical, pharmaceutical, and food industries due to their stability and environmental friendliness. The antioxidant activities of chito-oligosaccharides derived from fish scales evaluated via i) DPPH free radical scavenging activity, ii) superoxide anion radical scavenging activity, iii) ferrous ions chelating activity, and iv) reducing power analysis. The present work results indicated that chito-oligosaccharides (COS) derived from fish scales exhibited good antioxidant activities if compared against other sources of chitosan found in the literature. Thus, the development of bioactive products originated from fish scales could play a remarkable role in the sustainability and biomedical, food, and cosmaceuticals industries.
Cite this article:
Gul-e-Saba Chaudhry, Thirukanthan CS, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad. Effendy AWM, Chito-oligosaccharides derived from Tilapia Fish Scales; A Powerful Antioxidant. Research Journal of Pharmacy and Technology 2023; 16(1):8-2. doi: 10.52711/0974-360X.2023.00002
Cite(Electronic):
Gul-e-Saba Chaudhry, Thirukanthan CS, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad. Effendy AWM, Chito-oligosaccharides derived from Tilapia Fish Scales; A Powerful Antioxidant. Research Journal of Pharmacy and Technology 2023; 16(1):8-2. doi: 10.52711/0974-360X.2023.00002 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-2
REFERENCE:
1. Mati-Baouche N, Elchinger PH, De-Baynast H, Pierre G, Delattre C, Michaud P Chitosan as an adhesive. Eur Polym J. 2014; 60: 198–212.
2. FAO. The State of World Fisheries and Aquaculture 2012. FAO Fisheries and Aquaculture Department, Rome, Italy 2012.
3. Gjedrem T. Genetic improvement for the development of efficient global aquaculture: a personal opinion review. Aquaculture. 2012;344: 12-22. doi.org/10.1016/j.aquaculture.2012.03.003.
4. FAO/ASTF project, 2019. GCP/RAF/510/MUL: Enhancing capacity/risk reduction of emerging Tilapia Lake Virus (TiLV) to Africa tilapia aquaculture: Intensive Training Course on TiLV. 2019.
5. Lopes C, Antelo LT, Franco-Uria A, Alonso AA, Perez-Martin R. Valorisation of fish by-products against waste management treatments—Comparison of environmental impacts. Waste Manag. 46; 2015: 103–112. doi: 10.1016/j.wasman.2015.08.017.
6. Pati F, Adhikari B, Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability. Biores Technol. 101;2010: 3737–3742. doi.org/10.1016/j.biortech.2009.12.133
7. Basu B, Ajit KB. Production of protein rich organic fertilizer from fish scale by Aspergillus mutant AB100-A media optimization study. J Sci Ind Res. 2005;64: 293–298.
8. Pan MH, Tsai ML, Chen WM, Hwang A, Pan BS, Hwang YR, Kuo JM. Purification and characterization of a fish scale-degrading enzyme from a newly identified Vogesella sp. J Agric Food Chem. 2010;58: 12541–12546. doi: 10.1021/jf1034042.
9. Ross P. Carlson, Reed Taffs, William M. Davison & Philip S. Stewart. Anti-biofilm properties of chitosan-coated surfaces. Journal of Biomaterials Science, Polymer Edition 2008;19:8: 1035-1046. doi: 10.1163/156856208784909372.
10. Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature. 2008;452: 76–79.
11. Rinaudo M, Chitin and chitosan: Properties and applications, Progress in Polymer Science. 2006;31(7): 603-632.
12. Farooq Hamed S. Kittur, Acharya B. Vishu Kumar, Rudrapatnam N. Tharanathan. Low molecular weight chitosans—preparation by depolymerization with Aspergillus niger pectinase, and characterization, Carbohydrate Research. 2003;338(12): 1283-1290, ISSN 0008-6215.
13. Begona CG, Ruth. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int J Pharm. 1997;148: 231–240.
14. Lian-Ying Zheng, Jiang-Feng Zhu. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers. 2003;54(4): 527-530. doi.org/10.1016/j.carbpol.2003.07.009.
15. Caiqin Qin, Yumin Du, Ling Xiao, Zhan Li, Xiaohai Gao. Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol. 2002;31(1-3): 111-117. doi: 10.1016/s0141-8130(02)00064-8.
16. Toan NV. Production of Chitin and Chitosan from Partially Autolyzed Shrimp Shell Materials. The Open Biomaterials Journal. 2009;1: 21-24. doi: 10.2174/1876502500901010021.
17. Shun-Hsien C, Chien-Hui W, Guo-Jane T. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydrate Polymers. 2018;181: 1026-1032. doi: 10.1016/j.carbpol.2017.11.047.
18. Lingnert H, Vallentin K, Eriksson CEJ. Food Process Pres. 1979;3: 87–104.
19. Oyaizu M. Studies on product of browning reaction prepared from glucose amine Japanese. Journal of Nutrition. 1986;44: 307.
20. Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994;315: 161–169. doi: 10.1006/abbi.1994.1485.
21. De Gaulejac, N.S.C, Provost C, Vivas N. Comparative study of polyphenol scavenging activities assessed by different methods. J Agric Food Chem. 1999;47: 425-431. doi: 10.1021/jf980700b.
22. Kamble MA, Dhabarde DM, Sant AP, Ingole AR, Potnis VV. Sea Weed Therapy: Medicinal and Cosmeceutical Value, A Review. Research J Pharmacognosy and Phytochemistry. 2013;5(4): 208-212.
23. Manikiran SS, Pratap SNH, Prasanthi NL, Ramarao N. Formulation Perspectives of Chitosan: A Biomolecule for Microencapsulation. Research J Pharm and Tech. 2011;4 (5): 667-676. DOI: 10.5958/0974-360X.
24. Jain V, Garg G, Patil UK, Jain S. Recent Perspectives of Chitosan: A Review. Research J Pharma Dosage Forms and Tech. 2010;2(3): 220-224.
25. Krishna KV, Karuppuraj V, Perumal K. Antioxidant activity and Folic acid content in indigenous isolates of Ganoderma lucidum. Asian J Pharm Ana. 2016;6(4): 213-215. doi: 10.1080/13880209.2021.1969413.
26. Muthukumaran P, Salomi S, Uma Maheshwari R. In vitro Antioxidant Activity of Premna serratifolia Linn. Asian J Res Pharm. Sci. 2013;3(1): 15-18. doi: 10.5958 2321-5836.
27. Pradeep Kumar S. Investigation of Antioxidant Activity of Hibiscus vitifolius leaves. Asian J Res Pharm Sci. 2013;3(4): 215-219. doi: 10.52711/2231-5659.
28. Valli G, Jeyalakshmi M. Preliminary Phytochemical and Antioxidant Study of Odina woodier Leaf Extract. Asian J Pharm Res. 2012;2(4): 153-155. doi: 10.5958/2231–5691.
29. Mrunali P, Nikhita P, Deepak K. In vitro Evaluation of Antioxidant Potential of N –Acetyl-D-Glucosamine. Asian J Res Pharm Sci. 2017;7(2): 120-122.
30. Ghanshyam B. Jadhav, Ravindranath B. Saudagar. Free radical Scavenging and Antioxidant Activity of Punica granatum Linn. Asian J Res Pharm Sci. 2014;4(2): 51-54. doi:10.22159/ajpcr.2016.v9i6.13941.
31. Sonali M, Parwate DV, Ingle VN, Panchbhai DS, Nagpurkar VS. Free Radical Scavenging Activity of Gamma Irradiated and Unirradiated Citrus medica Empty Juice Sacs. Asian J Research Chem. 2011;4(6): 957-959. doi: 10.5958/0974-4150.
32. Aranaz I, Mengíbar M, Harris R. Functional characterization of chitin and chitosan. Current Chemical Biology. 2009;3(2): 203–230. doi: 10.2174/2212796810903020203.
33. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai T. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients. 2013;5(10): 3779–3827. doi: 10.3390/nu5103779.
34. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal. 2013; 2013:16. doi.org/10.1155/2013/162750.
35. Agrawal M. Natural polyphenols based new therapeutic avenues for advanced biomedical applications. Drug Metabolism Reviews. 2015;47(4): 420–430. doi: 10.3109/03602532.2015.1102933.
36. Schreiber SB. Chitosan-gallic acid films as multifunctional food packaging. TN, USA: University of Tennessee, MSc Thesis. 2012.
37. Moreno-Vasquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodriguez-Felix F, Sanchez-Valdes S, Rosas-Burgos EC, Ocano-Higuera VM, Graciano-Verdugo AZ. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydrate Polymers. 2017;155: 117-127. doi: 10.1016/j.carbpol.2016.08.056. Epub 2016 Aug 18.
38. Woranuch S, Yoksan R. Preparation characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydrate Polymers. 2013;96(2): 495-502. doi: 10.1016/j.carbpol.2013.04.006.