Author(s): Arthi Balasundaram, Darling Chellathai David

Email(s): rtms86@yahoo.com

DOI: 10.52711/0974-360X.2023.00018   

Address: Arthi Balasundaram*, Darling Chellathai David
Department of Pharmacology, Sri Ramachandra Medical College and Research Institute,
Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai - 116, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 1,     Year - 2023


ABSTRACT:
Background: The phosphodiesterase (PDE)7B, belonging to family PDE7 has high affinity and specificity for cyclic adenosine monophosphate (cAMP). This was reported to regulate a range of physiological functions. Inhibition of this enzyme was found to have therapeutic effects. The present study aims to evaluate the inhibition of PDE7B by vasicine, using Nuclear magnetic resonance (NMR) spectroscopy. Materials and Methods: The 1D NMR based time series experiment was performed; the initial and the final spectra were compared for the formation of cAMP in the presence and absence of the inhibitor. Results: The PDE7B was inhibited completely by vasicine and no formation of AMP was seen in the time series spectra. Conclusion: NMR spectroscopy method revealed the PDE7B inhibitory activity of vasicine which may be considered as a therapeutic agent for diseases regulated by cAMP.


Cite this article:
Arthi Balasundaram, Darling Chellathai David. Evaluating phosphodiesterase 7B inhibition by vasicine using Nuclear Magnetic Resonance Spectroscopy.Research Journal of Pharmacy and Technology 2023; 16(1):103-6. doi: 10.52711/0974-360X.2023.00018

Cite(Electronic):
Arthi Balasundaram, Darling Chellathai David. Evaluating phosphodiesterase 7B inhibition by vasicine using Nuclear Magnetic Resonance Spectroscopy.Research Journal of Pharmacy and Technology 2023; 16(1):103-6. doi: 10.52711/0974-360X.2023.00018   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-1-18


REFERENCES:
1.    Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiological Reviews. 1995; 75(4):725-48. doi: 10.1152/physrev.1995.75.4.725.
2.    Speakman MJ. PDE5 inhibitors in the treatment of LUTS. Current Pharmaceutical Design. 2009;15(30):3502-5. doi: 10.2174/138161209789207051.
3.    Wang YJ. Jiang YL. Tang HF et al. Zl-n-91, a selective phosphodiesterase 4 inhibitor, suppresses inflammatory response in a COPD-like rat model. International Immunopharmacology. 2010; 10(2):252-8. doi: 10.1016/j.intimp.2009.11.008.
4.    Balsundaram A. Chellathai D. Phosphodiesterase 7B1 as therapeutic target for treatment of cognitive dysfunctions in multiple sclerosis. Journal of Pharmacology and Pharmacotherapeutics. 2018; 9(3):126. DOI: 10.4103/jpp.JPP_77_18
5.    Ghanta M. Panchanathan E. Lakkakula B et al. Retrospection on the Role of Soluble Guanylate Cyclase in Parkinson's Disease. Journal of Pharmacology & Pharmacotherapeutics. 2017; 8(3):87-91. doi: 10.4103/jpp.JPP_45_17.
6.    Ghanta M. Panchanathan E. Lakkakula BV. Cyclic Guanosine Monophosphate-Dependent Protein Kinase I Stimulators and Activators Are Therapeutic Alternatives for Sickle Cell Disease. Turkish Journal of Haematology : Official Journal of Turkish Society of Haematology. 2018; 35(1):77-8. doi: 10.4274/tjh.2017.0407.
7.    Maruthi R. Chandan RS. Anand Kumar Tengli. LC-MS/MS and NMR Characterization of impurities in Epalrestat. Research J. Pharm. and Tech. 2021; 14(1):11-13. doi: 10.5958/0974-360X.2021.00003.
8.    Chandana OSS. Swapna D. Ravichandra Babu R. HPLC determination of Sildenafil Tartrate and its related Substances along with some Supportive Studies using MS, XRD and NMR. Research J. Pharm. and Tech 2018; 11(5):2086-2093. doi: 10.5958/0974-360X.2018.00387.6   
9.    Shruthi Bharadwaj. Sheeja L. Lakshmi D. Sajidha Parveen K. 1H NMR Analysis and Bioautography Screening of Methanol Extract of Sargassum wightii by Chromatographic Separation. Research J. Pharm. and Tech. 2017; 10(2): 473-479. doi: 10.5958/0974-360X.2017.00095.6   
10.    Maruthi R. Chandan RS. Anand Kumar Tengli. Characterization of impurities in Teneligliptin hydrobromide hydrate by using LCMS/MS and NMR. Research J. Pharm. and Tech. 2020; 13(8):3569-3576. doi: 10.5958/0974-360X.2020.00631.9   
11.    Archana Kulkarni. Nasreen Jan. Seema Nimbarte. GC-MS, FT-IR and NMR Spectroscopy Analysis for Metabolome Profiling of Thyme Oil. Asian J. Research Chem. 2013; 6(10):945-949. DOI: Not Available
12.    Shashikant PP. Tryambakrao JP. Ratnamala SB. Synthesis, Characterization and In-Vitro Antidiabetic Studies of Vanadium Complexes derived from N2O2 donor Ligands. Asian J. Research Chem. 2018; 11(1):8-14. doi: 10.5958/0974-4150.2018.00003.2.
13.    Lian Y. Jiang H. Feng J et al. Direct and simultaneous quantification of ATP, ADP and AMP by 1H and 31P Nuclear Magnetic Resonance spectroscopy. Talanta. 2016; 150:485-92. doi: 10.1016/j.talanta.2015.12.051.
14.    Karthik Dhananjayan. Arunachalam Sumathy. Sivanandy Palanisamy. Dipeptidylpeptidase-4 Inhibitory Activity of Pergularia Daemia (Forsk) – An In-vitro Estimation. Asian J. Research Chem. 2013; 6(6):523-524.   DOI: Not Available
15.    Karthik Dhananjayan. Arunachalam Sumathy. Sivanandy Palanisamy. Molecular Docking Studies and in-vitro Acetylcholinesterase Inhibition by Terpenoids and Flavonoids. Asian J. Research Chem. 2013; 6(11):1011-1017. DOI: Not Available
16.    Mohanty IR. Borde M. Kumar C S. Maheshwari U. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: In silico, in vitro and in vivo analyses. Phytomedicine. 2019 Apr;57:158-165. doi: 10.1016/j.phymed.2018.09.195.
17.    Hina Shahnaz. Saeed Arayne M. Najma Sultana. Amir Haider. In vitro drug interaction studies of Fexofenadine with Enoxacin, Levofloxacin and Sparfloxacin. Asian J. Research Chem. 2012; 5(5):687-696. DOI: Not Available
18.    Palmer AG 3rd. Enzyme dynamics from NMR spectroscopy. Accounts of Chemical Research. 2015;48(2):457-65. doi: 10.1021/ar500340a
19.    Shamsuddin T. Alam MS. Junaid M. Akter R. Hosen SMZ. Ferdousy S. Mouri NJ. Adhatoda vasica (Nees.): A Review on its Botany, Traditional uses, Phytochemistry, Pharmacological Activities and Toxicity. Mini Rev Med Chem. 2021; 21(14):1925-1964. doi: 10.2174/1389557521666210226152238.
20.    Balsundaram A. Chellathai D. Screening The Effect Of Vasicine In Multiple Sclerosis Using Human Tissue Chip Model. International Journal of Pharmaceutical Sciences And Research. 2018; 9(9):3949-54. DOI: 10.13040/IJPSR.0975-8232.9(9).3949-54
21.    Balsundaram A. Chellathai D. Evaluation of acute and chronic toxicity, cognition in adult zebrafish with vasicine; A prospective cognition enhancer in neurological disorders. Int J Pharm Bio Sci. 2016; 7(3):298-302. DOI: 10.13040/IJPSR.0975-8232.9(9).3949-54
22.    Wasser JS. Vogel L. Guthrie SS et al. 31P-NMR determinations of cytosolic phosphodiesters in turtle hearts. Comparative Biochemistry and Physiology Part A, Physiology. 1997; 118(4):1193-200. doi: 10.1016/s0300-9629(97)00046-7.
23.    Gilard V. Balayssac S. Tinaugus A. Martins N. Martino R. Malet-Martino M. Detection, identification and quantification by 1H NMR of adulterants in 150 herbal dietary supplements marketed for improving sexual performance. Journal of Pharmaceutical and Biomedical Analysis. 2015; 102:476-93. doi: 10.1016/j.jpba.2014.10.011.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available