Author(s): Safaa A. M. Abdel-Karim, Amira M. A. El-Ganiny, Mona A. El-Sayed, Hisham A. Abbas

Email(s): safaaabdelaal85@gmail.com

DOI: 10.52711/0974-360X.2022.00722   

Address: Safaa A. M. Abdel-Karim*, Amira M. A. El-Ganiny, Mona A. El-Sayed, Hisham A. Abbas
Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022


ABSTRACT:
Staphylococcus aureus is one of the most common human pathogens that causes wide range of nosocomial and community acquired infections as wound and burn infections, food poisoning, endocarditis, pneumonia, meningitis and bacteremia. Beside its pathogenicity, it exhibits different antibiotic resistance mechanisms that complicate its treatment. Efflux is one of the resistance mechanisms that is used by bacterial pathogens to extrude antimicrobials as antibiotics and biocides and thus counteract their actions. Therefore, there is an urgent need for searching for compounds that have an efflux-inhibitory activity among the existing phar¬maceuticals and the compounds that are isolated from natural sources or the synthesis of novel derivatives to be able to treat S. aureus infections. Several efflux pump inhibitors have been identified or synthesized over the past years. In this review, we present the different compounds that have been proven to have an efflux-inhibitory activity against S. aureus and the current progress in their development.


Cite this article:
Safaa A. M. Abdel-Karim, Amira M. A. El-Ganiny, Mona A. El-Sayed, Hisham A. Abbas. Impeding efflux-mediated resistance in Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022; 15(9):4300-8. doi: 10.52711/0974-360X.2022.00722

Cite(Electronic):
Safaa A. M. Abdel-Karim, Amira M. A. El-Ganiny, Mona A. El-Sayed, Hisham A. Abbas. Impeding efflux-mediated resistance in Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022; 15(9):4300-8. doi: 10.52711/0974-360X.2022.00722   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-9-82


REFERENCES:
1.    Wertheim HFL. Melles DC. Vos MC. van Leeuwen W. van BelKum A. Verbrugh HA et al The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases 2005; 5(12):751-762. doi.org/10.1016/s1473-3099(05)70295-4
2.    Schleifer KH. Bell JA. Family VIII. Staphylococcaceae fam. nov. In Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH and Whitman WB. Bergey's Manual of Systematic Bacteriology. Springer, USA. 2009; 2nd ed, Volume 3: pp. 392-420.‏ doi.org/10.1002/9781118960608.fbm00118
3.    Abdelghafar A. Yousef N. Askoura M. Combating Staphylococcus aureus biofilm with Antibiofilm agents as an efficient strategy to control bacterial infection. Research Journal of Pharmacy and Technology 2020; 13(11):5601-5606. doi.org/10.5958/0974-360X.2020.00977.4
4.    Shah KK. Gopinath P. Detection of FnbA gene encoding for fibronectin binding protein among clinical isolates of Staphylococcus aureus. Research Journal of Pharmacy and Technology 2017; 10(2):378-380. doi.org/10.5958/0974-360X.2017.00076.2
5.    Kumar A. Muralidharan NP. Screening of Nasal Carriers of Staphylococcus aureus in Dental Clinics. Research Journal of Pharmacy and Technology 2016; 9(10):1650-1652. doi.org/10.5958/0974-360X.2016.00332.2
6.    Selvan SR. Ganapathy D. Efficacy of Fifth Generation Cephalosporins against Methicillin-Resistant Staphylococcus aureus- A Review. Research Journal of Pharmacy and Technology 2016; 9(10):1815-1818. doi.org/10.5958/0974-360X.2016.00369.3
7.    Aires de Sousa M. Lencastre de H. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunology and Medical Microbiology 2004; 40(2):101-11. doi.org/10.1016/S0928-8244(03)00370-5
8.    Uma mageswari S. George P. Kalyani M. A Study on Coexistence of Panton Valentine Leukocidin Gene from Hospital Acquired Methicillin Resistance Staphylococcus aureus. Research Journal of Pharmacy and Technology 2019; 12(2):508-12. doi.org/10.5958/0974-360X.2019.00089.1
9.    Rupashri S. Gopinath P. Detection of CNA Gene for the presence of collagen adhesion in clinical strains of Staphylococcus aureus. Research Journal of Pharmacy and Technology 2016; 9(10):1626-1628. doi.org/10.5958/0974-360X.2016.00324.3
10.    Byarugaba DK. Mechanisms of Antimicrobial Resistance. In Sosa AJ, Byarugaba DK, Amabile-Cuevas CF, Hsueh PR, Kariuki S, Okeke IN. Antimicrobial Resistance in Developing Countries. Springer, New York. 2010; pp. 15-27.
11.    Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation 2003; 111(9):1265-1273. doi.org/10.1172/JCI18535
12.    Ross JI. Eady EA. Cove JH. Baumberg S. Identification of a chromosomally encoded ABC-transport system with which the staphylococcal erythromycin exporter MsrA may interact. Gene 1995; 153(1):93-98. doi.org/10.1016/0378-1119(94)00833-E
13.    Westh H. Hougaard DM. Vuust J. Rosdahl VT. Prevalence of erm gene classes in erythromycin-resistant Staphylococcus aureus strains isolated between 1959 and 1988. Antimicrobial agents and chemotherapy 1995; 39(2):369-373.‏ doi.org/10.1128/AAC.39.2.369
14.    Kehrenberg C. Schwarz S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrobial agents and chemotherapy 2004; 48(2):615-618.‏ doi.org/10.1128/AAC.48.2.615-618.2004
15.    Kehrenberg C. Cuny C. Strommenger B. Schwarz S. Witte W. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrobial agents and chemotherapy 2009; 53(2):779-781.‏ doi.org/10.1128/AAC.01376-08
16.    Chopra I. Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews 2001; 65:232-260. doi.org/10.1128/MMBR.65.2.232-260.2001
17.    Putman M. van Veen HW. Konings WN. Molecular properties of bacterial multidrug transporters. Microbiology and molecular biology reviews 2000; 64(4):672-693.‏ doi.org/10.1128/MMBR.64.4.672-693.2000
18.    Poole K. Bacterial multidrug efflux pumps serve other functions. Microbe-American Society for Microbiology 2008; 3(4):179.‏
19.    Piddock LJ. Multidrug-resistance efflux pumps not just for resistance. Nature Reviews Microbiology 2006a; 4(8):629-636. doi.org/10.1038/nrmicro1464
20.    Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical Microbiology Reviews 2006b; 19(2):382-402. doi.org/10.1128/CMR.19.2.382-402.2006
21.    Pu Y. Ke Y. Bai F. Active efflux in dormant bacterial cells – new insights into antibiotic persistence. Drug Resistance Updates 2017; 30:7-14.‏ doi.org/10.1016/j.drup.2016.11.002
22.    Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Journal of applied microbiology 2002; 92:65S-71S.‏ doi.org/10.1046/j.1365-2672.92.5s1.4.x
23.    Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature 2007; 446(7137):749-757. doi.org/10.1038/nature05630
24.    West IC. Energy coupling in secondary active transport. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1980; 604:91-126.‏ doi.org/10.1016/0304-4157(80)90005-2
25.    Lekshmi M. Ammini P. Adjei J. Sanford LM. Shrestha U. Kumar S et al Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS microbiology 2018; 4(1):1.‏ doi.org/10.3934%2Fmicrobiol.2018.1.1
26.    Boudker O. Verdon G. Structural perspectives on secondary active transporters. Trends in pharmacological sciences 2010; 31(9):418-426.‏ doi.org/10.1016/j.tips.2010.06.004
27.    Kumar A. Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Advanced drug delivery reviews 2005; 57(10):1486-1513. doi.org/10.1016/j.addr.2005.04.004
28.    Poole K. Efflux pumps as antimicrobial resistance mechanisms. Annals of medicine 2007; 39(3):162-176.‏ doi.org/10.1080/07853890701195262
29.    Floyd JL. Smith KP. Kumar SH. Floyd JT. Varela MF. LmrS is a multidrug efflux pump of the Major Facilitator Superfamily from Staphylococcus aureus. Antimicrobial agents and chemotherapy 2010; 54(12):5406-5412.‏ doi.org/10.1128/AAC.00580-10
30.    Hassan KA. Liu Q. Elbourne LD. Ahmad I. Sharples D. Naidu V et al Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram‐negative pathogens. Research in microbiology 2018; 169(7-8):450-454.‏ https://doi.org/10.1016/j.resmic.2018.01.001
31.    Ruggerone P. Murakami S. M Pos K. Vargiu AV. RND efflux pumps: structural information translated into function and inhibition mechanisms. Current topics in medicinal chemistry 2013; 13(24):3079-3100.‏
32.    Kuroda T. Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2009; 1794(5):763-768.‏ doi.org/10.1016/j.bbapap.2008.11.012
33.    Costa SS. Ntokou E. Martins A. Viveiros M. Pournaras S. Couto I et al Identification of the plasmid-encoded QacA efflux pump gene in meticillin-resistant Staphylococcus aureus (MRSA) strain HPV107, a representative of the MRSA Iberian clone. International journal of antimicrobial agents 2010; 36(6):557-561.‏ doi.org/10.1016/j.ijantimicag.2010.08.006
34.    Santagati M. Iannelli F. Cascone C. Campanile F. Oggioni MR. Stefani S et al The novel conjugative transposon TN1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microbial Drug Resistance 2003; 9(3):243-247.‏ doi.org/10.1089/107662903322286445
35.    Schindler BD. Kaatz GW. Multidrug efflux pumps of Gram-positive bacteria. Drug Resistance Updates 2016; 27:1-13. doi.org/10.1016/j.drup.2016.04.003
36.    Li XZ. Plésiat P. Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical microbiology reviews 2015; 28(2):337-418.‏ doi.org/10.1128/CMR.00117-14
37.    Jarmuła A. Obłąk E. Wawrzycka D. Gutowicz J. Efflux-mediated antimicrobial multidrug resistance. Postepy higieny i medycyny doswiadczalnej (Online) 2011; 65:216-227.‏ doi.org/10.5604/17322693.937011
38.    DeMarco CE. Cushing LA. Frempong-Manso E. Seo SM. Jaravaza TA. Kaatz GW. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrobial agents and chemotherapy 2007; 51(9):3235-3239.‏ doi.org/10.1128/AAC.00430-07
39.    Kaatz GW. McAleese F. Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrobial agents and chemotherapy 2005; 49(5):1857-1864.‏ doi.org/10.1128/AAC.49.5.1857-1864.2005
40.    Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical microbiology reviews 2006c; 19(2):382-402.‏ doi.org/10.1128/CMR.19.2.382-402.2006
41.    Borges-Walmsley MI. McKeegan KS. Walmsley AR. Structure and function of efflux pumps that confer resistance to drugs. Biochemical Journal 2003; 376(2):313-338.‏ doi.org/10.1042/bj20020957
42.    Dawson RJ. Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443(7108):180-185. doi.org/10.1038/nature05155
43.    Poole K. Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy 2005; 56(1):20-51. doi.org/10.1093/jac/dki171
44.    Kikukawa T. Nara T. Araiso T. Miyauchi S. Kamo N. Two-component bacterial multidrug transporter, EbrAB: Mutations making each component solely functional. Biochimica et Biophysica Acta (BBA)-Biomembranes 2006; 1758(5):673-679.‏ doi.org/10.1016/j.bbamem.2006.04.004
45.    Wasaznik A. Grinholc M. Bielawski KP. Active efflux as the multidrug resistance mechanism. Postepy higieny i medycyny doswiadczalnej (Online) 2009; 63:123-133.‏
46.    Dawson RJ. Locher KP. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS letters 2007; 581(5):935-938.‏ doi.org/10.1016/j.febslet.2007.01.073
47.    Reynolds E. Ross JI. Cove JH. Msr (A) and related macrolide/streptogramin resistance determinants: incomplete transporters?. International journal of antimicrobial agents 2003; 22(3):228-236.‏ doi.org/10.1016/S0924-8579(03)00218-8
48.    Costa SS. Falcao C. Viveiros M. Machado D. Martins M. Melo-Cristino J et al Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC microbiology 2011; 11(1):1-12.‏ doi.org/10.1186/1471-2180-11-241
49.    Noguchi N. Okihara T. Namiki Y. Kumaki Y. Yamanaka Y. Koyama M et al Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002. International journal of antimicrobial agents 2005; 25(5):374-379.‏ doi.org/10.1016/j.ijantimicag.2004.11.016
50.    Marquez B. Neuville L. Moreau NJ. Genet JP. Dos Santos AF. De Andrade MCC et al Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry 2005; 66:1804-1811. doi.org/10.1016/j.phytochem.2005.06.008
51.    Frempong-Manso E. Raygada JL. DeMarco CE. Seo SM. Kaatz GW. Inability of a reserpine-based screen to identify strains overexpressing efflux pump genes in clinical isolates of Staphylococcus aureus. International journal of antimicrobial agents 2009; 33(4):360-363.‏ doi.org/10.1016/j.ijantimicag.2008.10.016
52.    Pagès JM. Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2009; 1794(5):826-833.‏ doi.org/10.1016/j.bbapap.2008.12.011
53.    Martins M. Viveiros M. Couto I. Costa SS. Pacheco T. Fanning S et al Identification of Efflux Pump-mediated Multidrug-resistant Bacteria by the Ethidium Bromide-agar Cartwheel Method. International Journal of Experimental and Clinical Pathophysiology and Drug Research 2011; 25:171-178.
54.    Viveiros M. Martins M. Couto I. Rodrigues L. Spengler G. Martins A et al New methods for the identification of efflux mediated MDR bacteria, genetic assessment of regulators and efflux pump constituents, characterization of efflux systems and screening for inhibitors of efflux pumps. Current drug targets 2008; 9(9):760-778.
55.    Patel D. Kosmidis C. Seo SM. Kaatz GW. Ethidium Bromide MIC Screening for Enhanced Efflux Pump Gene Expression or Efflux Activity in Staphylococcus aureus. Antimicrobial agents and Chemotherapy 2010; 54(12):5070-5073. doi.org/10.1128/AAC.01058-10
56.    Couto I. Costa SS. Viveiros M. Martins M. Amaral L. Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide. Journal of antimicrobial chemotherapy 2008; 62(3):504-513.‏ doi.org/10.1093/jac/dkn217
57.    Viveiros M. Rodrigues L. Martins M et al Antibiotic Resistance Protocols. In: Gillespie SH and McHugh TD. Evaluation of efflux activity of bacteria by a semi-automated fluorometric system. Humana Press, New York. 2010: pp. 159-72. doi.org/10.1007/978-1-60327-279-7_12
58.    Hatfaludi T. Al-Hasani K. Dunstone M. Boyce J. Adler B. Characterization of TolC efflux pump proteins from Pasteurella multocida. Antimicrobial agents and chemotherapy 2008; 52(11):4166-4171.‏ doi.org/10.1128/AAC.00245-08
59.    Pumbwe L. Randall LP. Woodward MJ. Piddock LJ. Evidence for Multiple-Antibiotic Resistance in Campylobacter jejuni Not Mediated by CmeB or CmeF. Antimicrobial Agents and Chemotherapy 2006 ;50(7):2592-2592.‏ doi.org/10.1128/AAC.49.4.1289-1293.2005
60.    Martins A. Amaral L. Screening for efflux pump systems of bacteria by the new acridine orange agar method. in vivo 2012; 26(2):203-206. PMID: 22351659
61.    Lee WK. Wolff NA. Thevenod F. Organic cation transporters: physiology, toxicology and special focus on ethidium as a novel substrate. Current Drug Metabolism 2009; 10(6):617-631. doi.org/10.2174/138920009789375360
62.    Sharma A. Gupta VK. Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. The Indian journal of medical research 2019; 149(2):129. doi.org/10.4103%2Fijmr.IJMR_2079_17
63.    Zechini B. Versace I. Inhibitors of multidrug resistant efflux systems in bacteria. Recent patents on anti-infective drug discovery 2009; 4(1):37-50.‏
64.    Handzlik J. Matys A. Kieć-Kononowicz K. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics 2013; 2(1):28-45. doi.org/10.3390/antibiotics2010028
65.    Pages JM. Amaral L. Fanning S. An original deal for new molecule: Reversal of efflux pump activity, a rational strategy to combat gram-negative resistant bacteria. Current medicinal chemistry 2011; 18(19):2969-2980.‏ doi.org/10.2174/092986711796150469
66.    Ramaswamy VK. Cacciotto P. Malloci G. Vargiu AV. Ruggerone P. Computational modelling of efflux pumps and their inhibitors. Essays in biochemistry 2017; 61(1):141-156.‏ doi.org/10.1042/EBC20160065
67.    Aeschlimann JR. Dresser LD. Kaatz GW. Rybak MJ. Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrobial Agents Chemotherapy 1999; 43(2):335-340. doi.org/10.1128/AAC.43.2.335
68.    Vidaillac C. Guillon J. Arpin C. Forfar-Bares I. Ba BB. Grellet J et al Synthesis of omeprazole analogues and evaluation of these as potential inhibitors of the multidrug efflux pump NorA of Staphylococcus aureus. Antimicrobial agents and chemotherapy 2007; 51(3):831-838.‏ doi.org/10.1128/AAC.01306-05
69.    Schindler BD. Jacinto P. Kaatz GW. Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics. Future microbiology 2013; 8(4):491-507.‏ doi.org/10.2217/fmb.13.16
70.    Dhavale SS. Bhosle AV. Hardikar SR. Kotkar TR. Significance of P-Glycoproteins as a Transporter System. Research Journal of Pharmacy and Technology 2008; 1(4):298-309.
71.    Gibbons S. Oluwatuyi M. Kaatz GW. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 2003; 51(1):13-17.‏ doi.org/10.1093/jac/dkg044
72.    Bramwell VH. Morris D. Ernst DS. Hings I. Blackstein M. Venner PM et al Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clinical cancer research 2002; 8(2):383-393.‏ PMID: 11839653
73.    Mullin S. Mani N. Grossman TH. Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX 710) and timcodar (VX-853). Antimicrobial agents and chemotherapy 2004; 48(11):4171-4176.‏ doi.org/10.1128/AAC.48.11.4171-4176.2004
74.    Mahmood HY. Jamshidi S. Sutton JM. Rahman KM. Current advances in developing inhibitors of bacterial multidrug efflux pumps. Current medicinal chemistry 2016; 23(10):1062-1081.‏
75.    Sabatini S. Kaatz GW. Rossolini GM. Brandini D. Fravolini A. From phenothiazine to 3-phenyl-1, 4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. Journal of medicinal chemistry 2008; 51(14):4321-4330.‏ doi.org/10.1021/jm701623q
76.    Sabatini S. Gosetto F. Serritella S. Manfroni G. Tabarrini O. Iraci N et al Pyrazolo [4, 3-c][1, 2] benzothiazines 5, 5-dioxide: a promising new class of Staphylococcus aureus NorA efflux pump inhibitors. Journal of medicinal chemistry 2012; 55(7):3568-3572. doi.org/10.1021/jm201446h
77.    Khan IA. Mirza ZM. Kumar A. Verma V. Qazi GN. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrobial agents and chemotherapy 2006; 50(2):810-812.‏ doi.org/10.1128/AAC.50.2.810-812.2006
78.    Mirza ZM. Kumar A. Kalia NP. Zargar A. Khan IA. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. Journal of medical microbiology 2011; 60(10):1472-1478.‏ doi.org/10.1099/jmm.0.033167-0
79.    Kumar A. Khan IA. Koul S. Koul JL. Taneja SC. Ali I et al Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 2008; 61(6):1270-1276.‏ doi.org/10.1093/jac/dkn088
80.    German N. Kaatz GW. Kerns RJ. Synthesis and evaluation of PSSRI-based inhibitors of Staphylococcus aureus multidrug efflux pumps. Bioorganic and medicinal chemistry letters 2008; 18(4):1368-1373.‏ doi.org/10.1016/j.bmcl.2008.01.014
81.    Wei P. Kaatz GW. Kerns RJ. Structural differences between paroxetine and femoxetine responsible for differential inhibition of Staphylococcus aureus efflux pumps. Bioorganic and medicinal chemistry letters 2004; 14(12):3093-3097.‏ doi.org/10.1016/j.bmcl.2004.04.018
82.    Zhang MZ. Mulholland N. Beattie D. Irwin D. Gu YC. Chen Q et al Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)-indoles and 3-(1,3,4-oxadiazol-5-yl)methyl-indoles. European Journal of Medicinal Chemistry 2013; 63(2):22-32.‏ doi.org/10.1016/j.ejmech.2013.01.038
83.    Zhao F. Liu N. Zhan P. Jiang X. Liu X. Discovery of HCV NS5B thumb site I inhibitors: core-refining from benzimidazole to indole scaffold. European journal of medicinal chemistry 2015; 94:218-228. doi.org/10.1016/j.ejmech.2015.03.012
84.    Ciulla MG. Kumar K. The natural and synthetic indole weaponry against bacteria. Tetrahedron Letters 2018; 59(34):3223-3233. doi.org/10.1016/j.tetlet.2018.07.045
85.    Pénez N. Culioli G. Pérez T. Briand JF. Thomas OP. Blache Y. Antifouling properties of simple indole and purine alkaloids from the Mediterranean gorgonian Paramuricea clavata. Journal of natural products 2011; 74(10):2304-2308. doi.org/10.1021/np200537v
86.    Subbareddy CV. Sumathi S. One-pot three-component protocol for the synthesis of indolyl-4 H-chromene-3-carboxamides as antioxidant and antibacterial agents. New Journal of Chemistry 2017; 41(17):9388-9396. doi.org/10.1039/C7NJ00980A
87.    Lepri S. Buonerba F. Goracci L. Velilla I. Ruzziconi R. Schindler BD et al Indole based weapons to fight antibiotic resistance: a structure–activity relationship study. Journal of medicinal chemistry 2016; 59(3):867-891. doi.org/10.1021/acs.jmedchem.5b01219
88.    Waters CM. Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology 2005; 21:319-346. doi.org/10.1146/annurev.cellbio.21.012704.131001
89.    Markham PN. Westhaus E. Klyachko K. Johnson ME. Neyfakh AA. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrobial agents and chemotherapy 1999; 43(10):2404-2408.‏ doi.org/10.1128/AAC.43.10.2404
90.    Kawase M. Sakagami H. Motohashi N. The chemistry of bioactive mesoionic heterocycles. Bioactive Heterocycles VII 2009; 16:135-152.‏ doi.org/10.1007/7081_2007_096
91.    Soares de Oliveira C. dos Santos Falcao-Silva V. Siqueira-Júnior JP. Harding DP. Lira BF. Lorenzo JGF et al Drug resistance modulation in Staphylococcus aureus, a new biological activity for mesoionic hydrochloride compounds. Molecules 2011; 16(3):2023-2031. doi.org/10.3390/molecules16032023
92.    Ball AR. Casadei G. Samosorn S. Bremner JB. Ausubel FM. Moy TI et al Conjugating berberine to a multidrug resistance pump inhibitor creates an effective antimicrobial. ACS chemical biology 2006; 1(9):594-600.‏ doi.org/10.1021/cb600238x
93.    Samosorn S. Tanwirat B. Muhamad N. Casadei G. Tomkiewicz D. Lewis K et al Antibacterial activity of berberine–NorA pump inhibitor hybrids with a methylene ether linking group. Bioorganic and medicinal chemistry 2009; 17(11):3866-3872.‏ doi.org/10.1016/j.bmc.2009.04.028
94.    Hsieh PC. Siegel SA. Rogers B. Davis D. Lewis K. Bacteria lacking a multidrug pump: a sensitive tool for drug discovery. Proceedings of the National Academy of Sciences 1998; 95(12):6602-6606.‏ doi.org/10.1073/pnas.95.12.6602
95.    Thota N. Reddy MV. Kumar A. Khan IA. Sangwan PL. Kalia NP et al Substituted dihydronaphthalenes as efflux pump inhibitors of Staphylococcus aureus. European journal of medicinal chemistry 2010; 45(9):3607-3616.‏ doi.org/10.1016/j.ejmech.2010.05.006
96.    Brincat JP. Carosati E. Sabatini S. Manfroni G. Fravolini A. Raygada JL et al Discovery of novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Journal of medicinal chemistry 2011; 54(1):354-365.‏ doi.org/10.1021/jm1011963
97.    Stavri M. Piddock LJ. Gibbons S. Bacterial efflux pump inhibitors from natural sources. Journal of antimicrobial chemotherapy 2007; 59(6):1247-1260. doi.org/10.1093/jac/dkl460
98.    Neyfakh AA. Borsch CM. Kaatz GW. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrobial agents and chemotherapy 1993; 37(1):128-129.‏ doi.org/10.1128/AAC.37.1.128
99.    Akiyama S. Cornwell MM. Kuwano M. Pastan I. Gottesman MM. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Molecular pharmacology 1988; 33(2):144-147.
100.    Sangwan PL. Koul JL. Koul S. Reddy MV. Thota N. Khan IA et al Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorganic and medicinal chemistry 2008; 16(22):9847-9857.‏ doi.org/10.1016/j.bmc.2008.09.042
101.    Pereda-Miranda R. Kaatz GW. Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. Journal of natural products 2006; 69(3):406-409. doi.org/10.1021/np050227d
102.    Cherigo L. Pereda-Miranda R. Fragoso- Serrano M. Jacobo-Herrera N. Kaatz GW. Gibbons S. Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. Journal of Natural Products 2008; 71(6):1037-1045. doi.org/10.1021/np800148w
103.    Oluwatuyi M. Kaatz GW. Gibbons S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004; 65(24):3249-3254.‏ doi.org/10.1016/j.phytochem.2004.10.009
104.    ‏Smith EC. Kaatz GW. Seo SM. Wareham N. Williamson EM. Gibbons S. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrobial agents and chemotherapy 2007; 51(12):4480-4483.‏ doi.org/10.1128/AAC.00216-07
105.    Stermitz FR. Tawara-Matsuda J. Lorenz P. Mueller P. Zenewicz L. Lewis K. 5’-methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. Journal of natural products 2000a; 63(8):1146-1149. doi.org/10.1021/np990639k
106.    Stermitz FR. Lorenz P. Tawara JN. Zenewicz LA. Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences 2000b; 97(4):1433-1437.‏ doi.org/10.1073/pnas.030540597
107.    Musumeci R. Speciale A. Costanzo R. Annino A. Ragusa S. Rapisarda A  et al Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. International journal of antimicrobial agents 2003; 22(1):48-53.‏ doi.org/10.1016/S0924-8579(03)00085-2
108.    Morel C. Stermitz FR. Tegos G. Lewis K. Isoflavones as potentiators of antibacterial activity. Journal of Agricultural and Food Chemistry 2003; 51(19):5677-5679.‏ doi.org/10.1021/jf0302714
109.    Falcão-Silva VS. Silva DA. Souza MFV. Siqueira-Junior JP. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytotherapy Research 2009; 23(10):1367-1370.‏ doi.org/10.1002/ptr.2695
110.    Chan BC. Ip M. Lau CB. Lui SL. Jolivalt C. Jolivalt C et al Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. Journal of ethnopharmacology 2011; 137(1):767-773. doi.org/10.1016/j.jep.2011.06.039
111.    Fujita M. Shiota S. Kuroda T. Hatano T. Yoshida T. Mizushima T et al Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiology and immunology 2005; 49(4):391-396.‏ doi.org/10.1111/j.1348-0421.2005.tb03732.x
112.    Holler JG. Christensen SB. Slotved HC. Rasmussen HB. Gúzman A. Olsen CE et al Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. Journal of Antimicrobial Chemotherapy 2012a; 67(5):1138-1144.‏ doi.org/10.1093/jac/dks005
113.    Holler JG. Slotved HC. Molgaard P. Olsen CE. Christensen SB. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles. Bioorganic and medicinal chemistry 2012b; 20(14):4514-4521.‏ doi.org/10.1016/j.bmc.2012.05.025
114.    Belofsky G. Percivill D. Lewis K. Tegos GP. Ekart J. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. Journal of natural products 2004; 67(3):481-484.‏ doi.org/10.1021/np030409c
115.    Gibbons S. Moser E. Kaatz GW. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta medica 2004; 70(12):1240-1242.‏ doi.org/10.1055/s-2004-835860
116.    Nuraini P. Puteri MM. Pramesty E. Anti-biofilm activity of epigallocatechin gallate (Egcg) against Streptococcus mutans bacteria. Research Journal of Pharmacy and Technology 2021; 14(9):5019-5023. doi.org/10.52711/0974-360X.2021.00875
117.    Roccaro AS. Blanco AR. Giuliano F. Rusciano D. Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrobial agents and chemotherapy 2004; 48(6):1968-1973.‏ doi.org/10.1128/AAC.48.6.1968-1973.2004
118.    Fiamegos YC. Kastritis PL. Exarchou V. Han H. Bonvin AM. Vervoort J et al Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against Gram-positive pathogenic bacteria. PLoS ONE 2011; 6(4):e18127. doi.org/10.1371/journal.pone.0018127
119.    Karpakavalli M. Sangilimuthu AY. Komala M. Nagaraja Perumal G. Mohan S. Sivakumar T. Anti-oxidant and Anti-microbial activities of 2’’, 4’’-thiazolidindione derivatives of 7-flavonols. Research Journal of Pharmacy and Technology 2021; 14(8):4067-6. doi.org/10.52711/0974-360X.2021.00704
120.    Michalet S. Cartier G. David B. Mariotte AM. Dijoux-Franca MG. Kaatz GW et al N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorganic and medicinal chemistry letters 2007; 17(6):1755-1758.‏ doi.org/10.1016/j.bmcl.2006.12.059
121.    Bame JR. Graf TN. Junio HA. Bussey III RO. Jarmusch SA. El-Elimat T et al Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta medica 2013; 79(05):327-329.‏ doi.org/10.1055/s-0032-1328259
122.    Shiu WK. Malkinson JP. Rahman MM. Curry J. Stapleton P. Gunaratnam M et al A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. International journal of antimicrobial agents 2013; 42(6):513-518.‏ doi.org/10.1016/j.ijantimicag.2013.08.007
123.    Roy SK. Kumari N. Pahwa S. Agrahari UC. Bhutani KK. Jachak SM et al NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia 2013; 90:140-150. doi.org/10.1016/j.fitote.2013.07.015
124.    Kalia NP. Mahajan P. Mehra R. Nargotra A. Sharma JP. Koul S et al Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. Journal of antimicrobial chemotherapy 2012; 67(10):2401-2408.‏ doi.org/10.1093/jac/dks232
125.    Prabha I. Nagarajan NS. Synthesis, anti-larvicidal and anti-bacterial studies of 7-hydroxy-4methylcoumarin, 7-acetoxy-4-methylcoumarin, 8-acetyl-7-hydroxy-4methylcoumarin, resacetophenone, 8-acetyl-5-hydroxy-4-methylcoumarin and 4, 7-dimethylcoumarin. Research Journal of Pharmacy and Technology 2016; 9(4), 423-429. doi.org/10.5958/0974-360X.2016.00078.0
126.    Puzari M. Chetia P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: a major issue worldwide. World Journal of Microbiology and Biotechnology 2017; 33(2):24.‏ doi.org/10.1007/s11274-016-2190-5
127.    Schillaci D. Spano V. Parrino B. Carbone A. Montalbano A. Barraja P et al Pharmaceutical approaches to target antibiotic resistance mechanisms. Journal of medicinal chemistry 2017; 60(20):8268-8297.‏ doi.org/10.1021/acs.jmedchem.7b00215
128.    Monteiro KL. de Aquino TM. Mendonça Junior FJB. An update on Staphylococcus aureus NorA efflux pump inhibitors. Current Topics in Medicinal Chemistry 2020; 20(24):2168-2185.‏ doi.org/10.2174/1568026620666200704135837
129.    Lomovskaya O. Zgurskaya HI. Totrov M. Watkins WJ. Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nature reviews Drug discovery 2007; 6(1):56-65.‏ doi.org/10.1038/nrd2200
130.    Poole K. Krebes K. McNally C. Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. Journal of bacteriology 1993a; 175(22):7363-7372.‏ doi.org/10.1128/jb.175.22.7363-7372.1993
131.    Poole K. Heinrichs DE. Neshat S. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Molecular microbiology 1993b; 10(3):529-544.‏ doi.org/10.1111/j.1365-2958.1993.tb00925.x
132.    Xu J. Tasneen R. Peloquin CA. Almeida DV. Li SY. Barnes-Boyle K et al Verapamil increases the bioavailability and efficacy of bedaquiline but not clofazimine in a murine model of tuberculosis. Antimicrobial agents and chemotherapy 2018; 62(1):e01692-17. doi.org/10.1128/AAC.01692-17
133.    Rineh A. Bremner JB. Hamblin MR. Ball AR. Tegos GP. Kelso MJ. Attaching NorA efflux pump inhibitors to methylene blue enhances antimicrobial photodynamic inactivation of Escherichia coli and Acinetobacter baumannii in vitro and in vivo. Bioorganic and medicinal chemistry letters 2018; 28(16):2736-2740. doi.org/10.1016/j.bmcl.2018.02.041
134.    Sundaramoorthy NS. Suresh P. Ganesan SS. GaneshPrasad A. Nagarajan S. Restoring colistin sensitivity in colistin-resistant E. coli: combinatorial use of MarR inhibitor with efflux pump inhibitor. Scientific reports 2019; 9(1):1-13.‏ doi.org/10.1038/s41598-019-56325-x
135.    Hazlett LD. Ekanayaka SA. McClellan SA. Francis R. Glycyrrhizin use for multi-drug resistant Pseudomonas aeruginosa: In vitro and in vivo studies. Investigative ophthalmology and visual science 2019; 60(8):2978-2989.‏ doi.org/10.1167/iovs.19-27200
136.    Jang S. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. Journal of Microbiology 2016; 54(1):1-8.‏ doi.org/10.1007/s12275-016-5159-z
137.    Wang Y. Venter H. Ma S. Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Current drug targets 2016; 17(6):702-719. doi.org/10.2174/1389450116666151001103948
138.    Kosmidis C. Schindler BD. Jacinto PL. Patel D. Bains K. Seo SM et al Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. International journal of antimicrobial agents 2012; 40(3):204-209.‏ doi.org/10.1016/j.ijantimicag.2012.04.014

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available