Author(s): Nora Zawar Yousif, Sura Zuhair Mahmood

Email(s): pharm.nora.zawar@uomustansiriyah.edu.iq

DOI: 10.52711/0974-360X.2022.00719   

Address: Nora Zawar Yousif*, Sura Zuhair Mahmood*
Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022


ABSTRACT:
Multiparticulate drug delivery systems extend the frontier of pharmaceutical progress future by offering marvellous prospects for designing unique controlled and delayed-release oral preparations. Beads are composed of many distinct units. The preparation of microbeads drug delivery system is one of the alternatives which include neither utilization of harsh chemical nor raised temperature. This presented review gives a special emphasis on beads technology, ionic gelation and modified methodologies for preparation of beads. In general, the ionic gelation method mainly relies on the cross-linking between polyelectrolytes counterions and eventually, hydrogels will be formed. Natural origin polysaccharides biopolymers utilization has been widely augmented especially in controlled \ sustained formulation; accordingly, an eco-friendly pharmaceutical product can be provided. Furthermore, the review shed light on merits, limitations, promising polymers involved in the preparation, recent advances of multiple-unit drug delivery system approach based on Ionotropic gelation method, pharmaceutical application, and several basic evaluation characteristics.


Cite this article:
Nora Zawar Yousif, Sura Zuhair Mahmood. Review: Oral Beads as a Platform for Sustained Drug Delivery. Research Journal of Pharmacy and Technology. 2022; 15(9):4283-8. doi: 10.52711/0974-360X.2022.00719

Cite(Electronic):
Nora Zawar Yousif, Sura Zuhair Mahmood. Review: Oral Beads as a Platform for Sustained Drug Delivery. Research Journal of Pharmacy and Technology. 2022; 15(9):4283-8. doi: 10.52711/0974-360X.2022.00719   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-9-79


REFERENCES:
1.    Bharathi B. Sirisha B. Rao VUM. Lakshmi PV. Ajitha M. Techniques involved in preparation of hydrogel beads -a novel approach. International Journal of Innovative Pharmaceutical Sciences and Research. 2014;2 (11): 2911-2919.
2.    Usha AL. Earle RR. Sirisha PP. Sai K. Devi RK. Preparation and characterization of mebeverine hydrochloride microspheres. International journal of Pharmaceutical Sciences Review and Research. 2018;50(1): 9-13.
3.    Abbas Ak. Alhamdany AT. Floating microspheres of enalapril maleate as a developed controlled release dosage form: investigation the effect of ionotropic gelation technique. Turkish Journal of Pharmaceutical Sciences. 2020;17(2): 159-1 doi.org/10.4274/tjps.galenos.2018.15046.
4.    Covelo T. and Matricardi P. Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release. 2007; 119(1):5-24.doi.org/10.1016/j.jconrel.2007.01.004.
5.    Manjanna KM. Rajesh KS. Shivakumar B. Formulation and optimization of natural polysaccharide hydrogel microbeads of aceclofenac sodium for oral controlled drug delivery. American Journal of Medical Sciences and Medicine. 2013; 1(1): 5-7. doi.org/10.12691/ajmsm-1-1-2.
6.    Prasad BSG. Gupta VRM. Devanna N. Jayasurya K. Microsphere as drug delivery system - a review. Journal of Global Trends in Pharmaceutical Sciences. 2014; 5(3):1961-1972.
7.    Vyas SP. Khar RK. Targeted and controlled drug delivery novel carrier system. Vallabh Prakashan, New Delhi India, 2004.
8.    Patel DA. Bharadia PD. Pandya V. Modi D. Microsphere as a novel drug delivery. International Journal of Pharmacy and Life Sciences. 2011;2(8):992-997.
9.    Pavan BK. Chandiran IS. Bhavya B. Sindhuri M. Microparticulate drug delivery system: A Review. Indian Journal of Pharmaceutical Science & Research. 2011;1(1):19-37.
10.    Masalova O. Kulikouskaya V. Shutava T. Agabekov V. Alginate and chitosan gel nanoparticles for efficient protein entrapment. Physics Procedia. 2013; 40: 69-75.doi.org/10.1016/j.phpro.2012.12.010.
11.    Servat-Medina L. González-Gómez A.Reyes-Ortega F. Queiroz NDCA. Zago PMW. Jorge MP. Monteiro KM et al. Chitosan-tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity. International Journal of Nanomedicine. 2015;10(1):3897-3909. doi.org/10.2147/IJN.S83705.
12.    Pedroso-Santana S. Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polymer International. 2020,69(5):443-447.  doi.org/10.2147/IJN.S83705.
13.    Silva CM. Ribeiro AJ. Figueiredo IV. Gonçalves AR. Veiga F. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. International Journal of Pharmaceutics. 2006; 311(1-2): 1-10. doi.org/10.1016/j.ijpharm.2005.10.050.
14.    Abdul Rasool BK. Fahmy SA. Development of coated beads for oral controlled delivery of cefaclor: in vitro evaluation. Acta Pharmaceutica. 2013; 63(1) :31-44. doi: 10.2478/acph-2013-0003. doi.org/10.2478/acph-2013-0003.
15.    Corstens MN. Berton-Carabin CC. Elichiry-Ortiz APT. Hol K.Troost FJ. Masclee AM. Schroën K. Emulsion-alginate beads designed to control in vitro intestinal lipolysis: Towards appetite control. Journal of Functional Foods. 2017; 34:319-328. doi.org/10.1016/j.jff.2017.05.003.
16.    Iswandana R. Putri KSS. Wulandari FR. Najuda G. Sari SP. Djajadisastra J. Preparation of calcium alginate-tetrandrine beads using ionic gelation method as colon-targeted dosage form. Journal of Applied Pharmaceutical Science. 2018 ;8(5): 068-074.
17.    Gupta KC. Kumar R. Drug release behavior of beads and microgranules of chitosan. Biomaterials. 2000; 21(11): 1115-1119. doi.org/10.1016/S0142-9612(99)00263-X.
18.    Gierszewska M. Ostrowska-Czubenko J. Equilibrium swelling study of crosslinked chitosan members in water, buffer and salt solutions. Progress on Chemistry and Application of Chitin and Its Derivatives. 2016; 7: 55-62.doi.org/10.15259/PCACD.21.05.
19.    Nitsae M. Madjid AA. Hakim L. Sabarudin AA. Preparation of chitosan beads using tripolyphosphate and ethylene glycol diglycidyl ether as crosslinker for Cr (VI) adsorption. Chemistry and Chemical Technology. 2016;10(1):106-116. doi.org/10.23939/chcht10.01.105.
20.    Patil P. Chavanke D. Wagh M. A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. International Journal of Pharmacy and Pharmaceutical Sciences. 2012; 4(4): 27-32.
21.    Kulkarni RV. Boppana R. Setty CM. Kalyane NV. Carboxymethylcellulose-aluminum hydrogel microbeads for prolonged release of simvastatin. Acta Pharmaceutica Sciencia 2010; 52: 137-143.
22.    Dhanaraju MD. Sundar VD. Kumar NS. Bhaskar K. Development and evaluation sustained delivery of diclofenac sodium from hydrophilic polymeric beads. Journal of young pharmacists, Pharmaceutics. 2009; 1(4): 301-304. doi.org/10.4103/0975-1483.59317.
23.    Babu RJ. Sathigari, MS. Kumar T. Pandit JK. Formulation of controlled release gellan gum macro beads of amoxicillin. Current Drug Delivery. 2010;7(1):36-43. doi.org/10.2174/156720110790396445.
24.    Agnihotri SA. Jawalkar SS. Aminabhavi TM. Controlled release of cephalexin through gellan gum beads: Effect of formulation parameters on entrapment efficiency, size, and drug release. European Journal of Pharmaceutics and Biopharmaceutics. 2006; 63(3): 249-261.doi.org/10.1016/j.ejpb.2005.12.008.
25.    Osmałek T. Milanowski B. Froelich A. Szybowicz M. Białowąs W. Kapela M. Gadziński P et al. Design and characteristics of gellan gum beads for modified release of meloxicam. Drug development and industrial pharmacy.2017;43(8):1314-1329. doi.org/10.1080/03639045.2017.1318896
26.    Adrover A. Paolicelli P. Petralito P. Muzio LD. Trilli J. Cesa S. Tho I. Casadei MA. Gellan gum/laponite beads for the modified release of drugs: experimental and modeling study of gastrointestinal release. Pharmaceutics. 2019;11(4)187. doi.org/10.3390/pharmaceutics11040187.
27.    Tripathi GK. Singh S. Formulation and in vitro evaluation of PH -Sensitive oil-entrapped buoyant beads of clarithromycin. Tropical Journal of Pharmaceutical Research. 2019;9(6):533-539.doi.org/10.4314/tjpr.v9i6.63551.
28.    Atara SA. Soniwala M. Formulation and evaluation of pectin-calicum chloride beads of azathioprine for colon targeted drug delivery system. International Journal of Pharmacy and Pharmaceutical Sciences.2018;10(1):172-177. doi.org/10.22159/ijpps.2018v10i1.23175
29.    Hemalatha K. Lathaeswari R. Suganeswari M. Senthil KV. Anto SM. Formulation and evaluation of metoclopramide hydrochloride microbeads by ionotropic gelation method. International Journal of Pharmaceutical & Biological Archives. 2011; 2(3):921-925.
30.    Patil JS. Kamalapur MV. Marapur SC. Kadam DV. Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Digest Journal of Nanomaterials and Biostructures. 2010; 5(1): 241-248.
31.    Sullad AG. Manjeshwar LS. Aminabhavi TM. Microspheres of carboxymethyl guar gum for in vitro release of abacavir sulfate: preparation and characterization. Journal of Applied Science 2011; 122 (1): 452-460. doi.org/10.1002/app.34173.
32.    Ahmed MM. Abd El-Rasoul S. Auda SH. Ibrahim MA. Emulsification/internal gelation as a method for preparation of diclofenac sodium-sodium alginate microparticles. Suadi Pharmaceutical Journal. 2013;21(1): 61-69. doi.org/10.1016/j.jsps.2011.08.004.
33.    Poncelet D. Babak V. Dulieu C. Picot A. A Physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloids and surfaces a: Physicochemical and Engineering Aspects.1999;155: 171-176. doi.org/10.1016/S0927-7757(98)00709-2.
34.    Singh DJ. Parmar JJ. Darshana D. Hegde DD. Lohade AA. Soni P. Samad A et al. Development and evaluation of dry powder inhalation system of terbutaline sulphate for better management of asthma. International Journal of Advances in Pharmaceutical Sciences, 2010; 2: 133-141. doi: 10.5138/ijaps.2010.0976.1055.01015.
35.    Han J. Guinier AS. Salmieri S. Lacroix M. Alginate and chitosan functionalization for micronutrient encapsulation. Journal of Agricultural and Food Chemistry. 2008; 56:2528-2535. doi.org/10.1021/jf703739k.
36.    Vaibhav R. Satya SS. Roop S.Niharika L. Pragya Y. Microsphere: a promising drug carrier. Journal of Drug Delivery & Therapeutics. 2016; 6(3):18-26. doi.org/10.22270/jddt.v6i3.1196.
37.    Gerez CL.Valdez GF. Gigante ML. Grosso CRF. Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Letters in Applied Microbiology. 2012: 1-13. doi.org/10.1111/j.1472-765X.2012.03247.x
38.    Chambin, O. Dupuis G. Champion D. Voilley A. Pourcelot Y. Colon-specific drug delivery: influence of solution reticulation properties upon pectin beads performance. International Journal of Pharmaceutics. 2006; 321(1-2): 86-93. doi.org/10.1016/j.ijpharm.2006.05.015
39.    Yao KD. Yin YJ. Cheng GX. Ma JB. Properties of polyelectrolyte complex films of chitosan and gelatin. Polymer International.1999; 48(6): 429-32.doi.org/10.1002/(SICI)1097-0126(199906)48:6<429::AID-PI160>3.0.CO;2-1
40.    Singhi D. Soni Sh. Mishra AK. Bansal AK. Pandit JK. Preparation and characterization of gellan-chitosan polyelectrolyte complex beads Latin American Journal of Pharmacy. 2011;30 (6): 1186-1195.
41.    Patel NR. Patel DA. Praful D. Bharadia PV, Modi D. Microsphere as a novel drug delivery. International Journal of Pharmacy & Life Sciences. 2011;2(8):992-997.
42.    Garud N. Garud A. Jain N. Formulation, design and in-vitro evaluation of metformin microspheres using ionotropic gelation technique. Journal of Pharmacy Research.2011;4(7):2103-2106.
43.    Sreeja CN. Anoop KR. Local antimicrobial delivery of satranidazole loaded cross linked periodontal chips using bio degradable polymers. International Journal of Pharmacy and Pharmaceutical Sciences. 2013;5(3):839-847.
44.    Younis MK. Tareq AZ. Kamal IM. Optimization of swelling, drug loading and release from natural polymer hydrogels. International Conference on Materials Engineering and Science. 2018:454. doi.org/10.1088/1757-899X/454/1/012017.
45.    Shu XZ. Zhu KJ. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. International Journal of Pharmaceutics.2000; 201: 51-58.  doi.org/10.1016/S0378-5173(00)00403-8
46.    Murata Y. Toniwa S. Miyamoto E. Kawashima S. Preparation of alginate gel beads containing chitosan nicotinic acid salts and their functions. European Journal of Pharmaceutics and Biopharmaceutics.1999;48:49-52. doi.org/10.1016/S0939-6411(99)00026-0.
47.    Ali WK. Alkazzaz SZM. Sabry HS. Naseer ST. Preparation and evaluation of controlled release calcium alginate beads containing mefenamic acid. Mustansiriyah Journal of Pharmaceutical Sciences. 2019;19(2):9-16. doi.org/10.32947/ajps9.19.02.039.
48.    Aswathy SN. Vidhya KM. Saranya TR. Sreelakshmy KR. Sreeja CN. Mucoadhesive buccal patch of cefixime trihydrate using biodegradable natural polymer. International Journal of Pharmacy and Pharmaceutical Sciences .2014; 6(6):366-371.
49.    Thanziya F. Shabaraya AR.Vinayak K. A review on gastroretentive floating beads. International Journal of Pharmaceutical Chemistry.2019;5 (2):89-95.
50.    Kumar M. Saini V. Kumar C. Bhatt S. Malik A. Formulation development and evaluation of colon targeted beads of mesalamine. Journal of Drug Design and Research.2018; 5(2): 1067.
51.    Adebisi AO. Conway BRJ. Preparation and characterization of gastroretentive alginate beads for targeting H. pylori. Microencapsul. 2013;31(1):58-67. doi.org/10.3109/02652048.2013.805840.
52.    Jani P. Vadalia K. Bagdai H. Dedania R. Manseta P. Formulation and evaluation of controlled release floating microspheres of tolperisone hydrochloride. Asian Journal of Pharmaceutics. 2012; 6:190-197. doi.org/10.4103/0973-8398.104834.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available