Author(s): Tania Rizki Amalia, Eli Halimah, Riyadi Adrizain

Email(s): tania18002@mail.unpad.ac.id

DOI: 10.52711/0974-360X.2022.00716   

Address: Tania Rizki Amalia1*, Eli Halimah1, Riyadi Adrizain2
1Department of Phamacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.
2Department of Child’s Health, Faculty of Medicine , Universitas Padjadjaran, Bandung, Indonesia.
2Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022


ABSTRACT:
Background: According to the World Health Organization, lower respiratory tract infection such as pneumonia is in the category of ten leading causes of death in global. Many antibiotics used as the first-line treatment for pneumonia, such as penicillin and cephalosporins, are reported to be resistant. This review aimed to evaluate the resistance of antibiotics used for the treatment of pneumonia in order to provide information about antibiotic resistance. Thus, it can be a consideration for choosing the right antibiotic. Method: This paper was reviewed from previous research on antibiotic resistance used for the treatment of pneumonia using a search engine on the PubMed and Science Direct databases from 2011 to 2021. The articles assessed reported resistance from various classes of antibiotics such as macrolides, quinolones, carbapenems and aminoglycosides based on inclusion criteria. and exclusion. Result: Of the 19 articles included in the inclusion criteria, they were reported about resistance to macrolides that they found A2063G mutations in the 23S rRNA gene, quinolones resistance was found to be gyrA and ParC mutations, carbapenems resistance was assessed by high MIC and found in the blaOXA-51, blaOXA-23 and blaNDM- genes as the gene encoding the lactamase enzyme and porin mutation. Resistance to aminoglycosides found AAC (6')-Ib mutations on the 16S rRNA gene. Conclusion: Based on the results of the study, generally all classes of antibiotics used to treat pneumonia are resistant. To overcome antibiotic resistance, the use of combination antibiotics and increased doses are prescribed.


Cite this article:
Tania Rizki Amalia, Eli Halimah, Riyadi Adrizain. A Narrative Review Evaluation of Resistance Antibiotics used in Pneumonia. Research Journal of Pharmacy and Technology. 2022; 15(9):4261-9. doi: 10.52711/0974-360X.2022.00716

Cite(Electronic):
Tania Rizki Amalia, Eli Halimah, Riyadi Adrizain. A Narrative Review Evaluation of Resistance Antibiotics used in Pneumonia. Research Journal of Pharmacy and Technology. 2022; 15(9):4261-9. doi: 10.52711/0974-360X.2022.00716   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-9-76


REFERENCES:
1.     WHO. World Health Organization. (2019). Pneumonia. https://www.who.int/news-room/fact-sheets/detail/pneumonia accsessed on 16 February 2021.
2.     Cilloniz C, Martin-Loeches I, Garcia-Vidal C, Jose AS, Torres A. Microbial etiology of pneumonia: Epidemiology, diagnosis and resistance patterns. Int J Mol Sci. 2016;17(12). doi:10.3390/ijms17122120
3.     Mandell LA. Community-acquired pneumonia: An overview. Postgrad Med. 2015;127(6):607-615. doi:10.1080/00325481.2015.1074030
4.     UNICEF. Every Child ’s Right To Survive : An Agenda To End Pneumonia Deaths accessed on 16 February 2021. Published online 2020.
5.     Torres A, Blasi F, Peetermans WE, Viegi G, Welte T. The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: A literature review. Eur J Clin Microbiol Infect Dis. 2014;33(7):1065-1079. doi:10.1007/s10096-014-2067-1
6.     Ho J, Ip M. Antibiotic-Resistant Community-Acquired Bacterial Pneumonia. Infect Dis Clin North Am. 2019;33(4):1087-1103. doi:https://doi.org/10.1016/j.idc.2019.07.002
7.     Cal XF, Sun JM, Bao LS, Li W Bin. Risk factors and antibiotic resistance analysis of pneumonia caused by multidrug resistant acinetobacter baumannii in pediatric intensive care unit. Chinese J Emerg Med. 2012;21(4):356-360. doi:10.3760/cma.j.issn.1671-0282.2012.04.006
8.     Abbas HA, Kadry AA, Shaker GH, Goda RM.  Resistance of Escherichia coli and Klebsiella pneumoniae isolated from different Sources to β-lactam Antibiotics . Res J Pharm Technol. 2017;10(2):589. doi:10.5958/0974-360x.2017.00116.0
9.     Kaye KS, Pogue JM. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharmacotherapy. 2015;35(10):949-962. doi:10.1002/phar.1636
10.     Watkins RR, Van Duin D. Current trends in the treatment of pneumonia due to multidrug-resistant gram-negative bacteria [version 2; referees: 2 approved]. F1000Research. 2019;8(0):1-10. doi:10.12688/f1000research.16517.2
11.     Tran GM, Ho-Le TP, Ha DT, et al. Patterns of antimicrobial resistance in intensive care unit patients: A study in Vietnam. BMC Infect Dis. 2017;17(1):1-7. doi:10.1186/s12879-017-2529-z
12.     Ramya Chellammal M. Bacterial Pneumonia. Res J Pharm Technol. 2014;7(8).
13.     Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277. doi:10.5796/electrochemistry.82.749
14.     Thomson WM, Sudha M, Venkateswaramurthy N, Kumar RS. A review on the irrational antibiotics usage in pediatrics for respiratory tract infections. Res J Pharm Technol. 2019;12(10):5126-5130. doi:10.5958/0974-360X.2019.00888.6
15.     Sreeja. M.K, Gowrishankar N.L, Adisha. S DK. Antibiotic Resistance-Reasons and the Most Common Resistant Pathogens – A Review. Res J Chem Environ. 2017;10(6).
16.     Zhang WZ, Zhang SJ, Wang QY, et al. Outbreak of macrolide-resistant mycoplasma pneumoniae in a primary school in Beijing, China in 2018. BMC Infect Dis. 2019;19(1):4-10. doi:10.1186/s12879-019-4473-6
17.     Wu HM, Wong KS, Huang YC, et al. Macrolide-resistant Mycoplasma pneumoniae in children in Taiwan. J Infect Chemother. 2013;19(4):782-786. doi:10.1007/s10156-012-0523-3
18.     Meyer Sauteur PM, Bleisch B, Voit A, et al. Survey of macrolide-resistant Mycoplasma pneumoniae in children with community-acquired pneumonia in Switzerland. Swiss Med Wkly. 2015;144(September):2013-2015. doi:10.4414/smw.2014.14041
19.     Yang H, Song DJ, Shim JY. Mechanism of resistance acquisition and treat ­ ment of macrolide-resistant Mycoplasma pneu ­ moniae pneumonia in children. 2017;60(6):167-174.
20.     Cheong KN, Chiu SS, Chan BWK, To KKW, Chan ELY, Ho PL. Severe macrolide-resistant Mycoplasma pneumoniae pneumonia associated with macrolide failure. J Microbiol Immunol Infect. 2016;49(1):127-130. doi:10.1016/j.jmii.2014.11.003
21.     Zhou Y, Zhang Y, Sheng Y, Zhang L, Shen Z, Chen Z. More complications occur in macrolide-resistant than in macrolide-sensitive Mycoplasma pneumoniae pneumonia. Antimicrob Agents Chemother. 2014;58(2):1034-1038. doi:10.1128/AAC.01806-13
22.     Eshaghi AR, Memari N, Tang P, et al. Macrolide-resistant mycoplasma pneumoniae in humans, Ontario, Canada, 2010-2011. Emerg Infect Dis. 2013;19(9):1525-1527. doi:10.3201/eid1909.121466
23.     Ferguson GD, Gadsby NJ, Henderson SS, et al. Clinical outcomes and macrolide resistance in Mycoplasma pneumoniae infection in Scotland, UK. J Med Microbiol. 2013;62(PART 12):1876-1882. doi:10.1099/jmm.0.066191-0
24.     Hong KB, Choi EH, Lee HJ, et al. Macrolide resistance of mycoplasma pneumoniae, South Korea, 2000-2011. Emerg Infect Dis. 2013;19(8):1281-1284. doi:10.3201/eid1908.121455
25.     Ishiguro N, Koseki N, Kaiho M, et al. Regional differences in prevalence of macrolide resistance among pediatric mycoplasma pneumoniae infections in Hokkaido, Japan. Jpn J Infect Dis. 2016;69(3):186-190. doi:10.7883/yoken.JJID.2015.054
26.     Katsushima Y, Katsushima F, Suzuki Y, et al. Characteristics of Mycoplasma pneumoniae infection identified on culture in a pediatric clinic. Pediatr Int. 2015;57(2):247-252. doi:10.1111/ped.12513
27.     Ma Z, Zheng Y, Deng J, Ma X, Liu H. Characterization of macrolide resistance of Mycoplasma pneumoniae in children in Shenzhen, China. Pediatr Pulmonol. 2014;49(7):695-700. doi:10.1002/ppul.22851
28.     Takeuchi N, Ohkusu M, Hoshino T, et al. Emergence of quinolone-resistant strains in Streptococcus pneumoniae isolated from paediatric patients since the approval of oral fluoroquinolones in Japan. J Infect Chemother. 2017;23(4):218-223. doi:10.1016/j.jiac.2016.12.012
29.     Nakai H, Sato T, Uno T, et al. Mutant selection window of four quinolone antibiotics against clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. J Infect Chemother. 2018;24(2):83-87. doi:10.1016/j.jiac.2017.08.009
30.     Schmitz J, van der Linden M, Al-Lahham A, Levina N, Pletz MW, Imöhl M. Fluoroquinolone resistance in Streptococcus pneumoniae isolates in Germany from 2004–2005 to 2014–2015. Int J Med Microbiol. 2017;307(4-5):216-222. doi:10.1016/j.ijmm.2017.04.003
31.     Nhu NTK, Lan NPH, Campbell JI, et al. Emergence of carbapenem-resistant Acinetobacter baumanniias the major cause of ventilatorassociated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J Med Microbiol. 2014;63:1386-1394. doi:10.1099/jmm.0.076646-0
32.     Mao T, Hai H, Duan G, Yang H. Patterns of drug-resistant bacteria in a general hospital, China, 2011-2016. Polish J Microbiol. 68(2):225-232. doi:10.33073/PJM-2019-024
33.     Biedenbach DJ, Giao PT, Hung Van P, et al. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii From Patients With Hospital-acquired or Ventilator-associated Pneumonia in Vietnam. Clin Ther. 2016;38(9):2098-2105. doi:10.1016/j.clinthera.2016.07.172
34.     Kiratisin P, Chongthaleong A, Tan TY, et al. Comparative in vitro activity of carbapenems against major Gram-negative pathogens: Results of Asia-Pacific surveillance from the COMPACT II study. Int J Antimicrob Agents. 2012;39(4):311-316. doi:10.1016/j.ijantimicag.2012.01.002
35.     Mózes J, Szucs I, Molnár D, et al. A potential role of aminoglycoside resistance in endemic occurrence of Pseudomonas aeruginosa strains in lower airways of mechanically ventilated patients. Diagn Microbiol Infect Dis. 2014;78(1):79-84. doi:10.1016/j.diagmicrobio.2013.09.015
36.     Nasiri G, Peymani A, Farivar TN, Hosseini P. Molecular epidemiology of aminoglycoside resistance in clinical isolates of Klebsiella pneumoniae collected from Qazvin and Tehran provinces, Iran. Infect Genet Evol. 2018;64:219-224. doi:10.1016/j.meegid.2018.06.030
37.     Nie L, Lv Y, Yuan M, et al. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm Sin B. 2014;4(4):295-300. doi:10.1016/j.apsb.2014.06.004
38.     Ishiguro N, Koseki N, Kaiho M, et al. Therapeutic efficacy of azithromycin, clarithromycin, minocycline and tosufloxacin against macrolide-resistant and macrolide-sensitive Mycoplasma pneumoniae pneumonia in pediatric patients. PLoS One. 2017;12(3):1-13. doi:10.1371/journal.pone.0173635
39.     Kawai Y, Miyashita N, Kubo M, et al. Nationwide surveillance of macrolide-resistant mycoplasma pneumoniae infection in pediatric patients. Antimicrob Agents Chemother. 2013;57(8):4046-4049. doi:10.1128/AAC.00663-13
40.     Skalsky K, Yahav D, Lador A, Eliakim-Raz N, Leibovici L, Paul M. Macrolides vs. quinolones for community-acquired pneumonia: Meta-analysis of randomized controlled trials. Clin Microbiol Infect. 2013;19(4):370-378. doi:10.1111/j.1469-0691.2012.03838.x
41.     Teh B, Grayson ML, Johnson PDR, Charles PGP. Doxycycline vs. macrolides in combination therapy for treatment of community-acquired pneumonia. Clin Microbiol Infect. 2012;18(4):E71-E73. doi:10.1111/j.1469-0691.2011.03759.x
42.     Safarika A, Galani I, Pistiki A, Giamarellos-Bourboulis EJ. Time–kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: synergism with imipenem and colistin. Eur J Clin Microbiol Infect Dis. 2014;34(2):317-323. doi:10.1007/s10096-014-2231-7
43.     Cheng A, Chuang YC, Sun HY, et al. Excess Mortality Associated with Colistin-Tigecycline Compared with Colistin-Carbapenem Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Bacteremia: A Multicenter Prospective Observational Study. Crit Care Med. 2015;43(6):1194-1204. doi:10.1097/CCM.0000000000000933
44.     Ku YH, Chen CC, Lee MF, Chuang YC, Tang HJ, Yu WL. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J Microbiol Immunol Infect. 2017;50(6):931-939. doi:10.1016/j.jmii.2016.12.008
45.     Dickstein Y, Leibovici L, Yahav D, et al. Multicentre open-label randomised controlled trial to compare colistin alone with colistin plus meropenem for the treatment of severe infections caused by carbapenem-resistant gram-negative infections (aida): A study protocol. BMJ Open. 2016;6(4):1-10. doi:10.1136/bmjopen-2015-009956
46.     Cisneros JM, Rosso-fernández CM, Roca-oporto C, et al. Colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia (Magic Bullet study): an investigator-driven, open-label, randomized, noninferiority controlled trial. Crit Care. Published online 2019:1-13. https://ccforum.biomedcentral.com/articles/10.1186/s13054-019-2627-y%0Ahttps://ccforum.biomedcentral.com/articles/10.1186/s13054-019-2627-y
47.     Yu L, Zhang J, Fu Y, et al. Synergetic Effects of Combined Treatment of Colistin With Meropenem or Amikacin on Carbapenem-Resistant Klebsiella pneumoniae in vitro. Front Cell Infect Microbiol. 2019;9(December). doi:10.3389/fcimb.2019.00422
48.     Van Duin D, Lok JJ, Earley M, et al. Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin Infect Dis. 2018;66(2):163-171. doi:10.1093/cid/cix783
49.     Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450-470. doi:10.1128/CMR.05041-11
50.     Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci. 2018;43(9):668-684. doi:10.1016/j.tibs.2018.06.011
51.     Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med. 2016;6(10):1-38. doi:10.1101/cshperspect.a025395
52.     Ye Y, Li S, Li Y, Ren T, Liu K.  Mycoplasma pneumoniae 23S rRNA Gene Mutations and Mechanisms of Macrolide Resistance . Lab Med. 2013;44(1):63-68. doi:10.1309/lmyey7p26rhwrrul
53.     Lambert T. Antibiotics that affect the ribosome. OIE Rev Sci Tech. 2012;31(1):57-64. doi:10.20506/rst.31.1.2095
54.     Schroeder MR, Stephens DS. Macrolide resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol. 2016;6(SEP):1-9. doi:10.3389/fcimb.2016.00098
55.     Liu X, Jiang Y, Chen X, Li J, Shi D, Xin D. Drug resistance mechanisms of Mycoplasma pneumoniae to macrolide antibiotics. Biomed Res Int. 2014;2014. doi:10.1155/2014/320801
56.     Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565-1574. doi:10.1021/bi5000564
57.     Gutierrez A, Stokes JM, Matic I. Our evolving understanding of the mechanism of quinolones. Antibiotics. 2018;7(2):1-8. doi:10.3390/antibiotics7020032
58.     Isea-Peña MC, Sanz-Moreno JC, Esteban J, Fernández-Roblas R, Fernández-Guerrero ML. Risk factors and clinical significance of invasive infections caused by levofloxacin-resistant Streptococcus pneumoniae. Infection. 2013;41(5):935-939. doi:10.1007/s15010-013-0481-4
59.     Yan L, Liu D, Wang XH, et al. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China. Sci Rep. 2017;7:1-12. doi:10.1038/srep40610
60.     Fernández L, Hancock REW. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661-681. doi:10.1128/CMR.00043-12
61.     Divya Maria J, Vijey Aanandhi M. An overview on antibiotic use and resistance. Res J Pharm Technol. 2017;10(8):2793-2796. doi:10.5958/0974-360X.2017.00494.2
62.     Hooper DC, Jacoby GA. Mechanisms of drug resistance: Quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12-31. doi:10.1111/nyas.12830
63.     Lee JW, Kim N, Nam RH, et al. Mutations of Helicobacter pylori Associated with Fluoroquinolone Resistance in Korea. Helicobacter. 2011;16(4):301-310. doi:10.1111/j.1523-5378.2011.00840.x
64.     Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat. 2016;29:13-29. doi:10.1016/j.drup.2016.09.001
65.     Yadav R, Landersdorfer CB, Nation RL, Boyce JD, Bulitta JB. Novel approach to optimize synergistic carbapenem-aminoglycoside combinations against carbapenem-resistant Acinetobacter Baumannii. Antimicrob Agents Chemother. 2015;59(4):2286-2298. doi:10.1128/AAC.04379-14
66.     Saleh MM, Sadeq RA, Latif HKA, Abbas HA, Askoura M. Antimicrobial susceptibility and resistance profile of pseudomonas aeruginosa isolates from patients at an Egyptian hospital. Res J Pharm Technol. 2018;11(8):3268-3272. doi:10.5958/0974-360X.2018.00601.7
67.     S. Syed Shihaab E Noor GP. Detection of Carbapenemase Resistance among Clinical Isolates of Escherichia coli. Res J Pharm Technol. 2018;11(2).
68.     Lee YR, Baker NT. Meropenem-vaborbactam: a carbapenem and beta-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2018;37(8):1411-1419. doi:10.1007/s10096-018-3260-4
69.     Rice LB. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc. 2012;87(2):198-208. doi:10.1016/j.mayocp.2011.12.003
70.     Kapoor, G., Saigal, S., & Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of anaesthesiology, clinical pharmacology,. J Anaesthesiol Clin Pharmacol. 2017;33(3):300-305.
71.     Warnes SL, Highmore CJ, Keevil CW. Horizontal Transfer of Antibiotic Resistance Genes on Abiotic Touch Surfaces : Implications for Public Health. 2012;3(6):1-10. doi:10.1128/mBio.00489-12.Editor
72.     Kim YJ, Kim SI, Hong KW, Kim YR, Park YJ, Kang MW. Risk factors for mortality in patients with carbapenem-resistant acinetobacter baumannii bacteremia: Impact of appropriate antimicrobial therapy. J Korean Med Sci. 2012;27(5):471-475. doi:10.3346/jkms.2012.27.5.471
73.     Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 2014;78:3-13. doi:10.1016/j.addr.2014.08.003
74.     Anima N, Dhamodharan S, Nayak BK. Antibiotic resistance pattern exhibited by Esbl (Extended spectrum β-lactamases) in multidrug resistant strains, Escherichia coli. Res J Pharm Technol. 2017;10(11):3705-3708. doi:10.5958/0974-360X.2017.00672.2
75.     Jubeh B, Breijyeh Z, Karaman R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 2020;25(12). doi:10.3390/molecules25122888
76.     Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides : An Overview. Published online 2016.
77.     Castanheira M, Davis AP, Mendes RE, Serio AW, Krause KM, Flamm RK. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from U.S. Hospitals and Comparative Activities of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes. Antimicrob Agents Chemother. 2018;62(8):1-18. doi:10.1128/AAC.00313-18
78.     Aliakbarzade K, Farajnia S, Karimi Nik A, Zarei F, Tanomand A. Prevalence of aminoglycoside resistance genes in Acinetobacter baumannii isolates. Jundishapur J Microbiol. 2014;7(10):1-6. doi:10.5812/jjm.11924
79.     Ramirez MS, Nikolaidis N, Tolmasky ME. Rise and dissemination of aminoglycoside resistance: The aac(6′)-Ib paradigm. Front Microbiol. 2013;4(MAY):1-13. doi:10.3389/fmicb.2013.00121
80.     Fosso MY, Li Y, Garneau-Tsodikova S. New trends in the use of aminoglycosides. Medchemcomm. 2014;5(8):1075-1091. doi:10.1039/c4md00163j
81.     Cag Y, Caskurlu H, Fan Y, Cao B, Vahaboglu H. Resistance mechanisms. Ann Transl Med. 2016;4(17):2-9. doi:10.21037/atm.2016.09.14
82.     Rahimi F. Characterization of resistance to aminoglycosides in methicillin-resistant staphylococcus aureus strains isolated from a tertiary care hospital in Tehran, Iran. Jundishapur J Microbiol. 2016;9(1):2-7. doi:10.5812/jjm.29237
83.     Priyadarshini M. Deodurg, Srikanth, Praveen Kumar Doddamani, Shireen Rana BAM. Prevalence and Antimicrobial Susceptibility Pattern of Pseudomonas aeruginosa in a Tertiary Care Hospital. Res J Pharm Technol. 2014;7(5).
84.     Wal Pranay, Wal Ankita, Srivastava Rishabh, Rastogi Prateek RAK. Antibiotic Therapy in Pediatric Patients. Res J Pharm Technol. 2010;3(1).

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available