Author(s): Natasha Verma, Annamalai Rama, Adrija Jha, Bhautik Ladani, Induja Govindan, Sivakumar Kannan, Srinivas Hebbar, Anup Naha


DOI: 10.52711/0974-360X.2022.00715   

Address: Natasha Verma, Annamalai Rama, Adrija Jha, Bhautik Ladani, Induja Govindan, Sivakumar Kannan, Srinivas Hebbar, Anup Naha*
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022

The emergence of nanotechnology paves the way for improving disease therapy strategies. An investigation into the progression of the release of the medication targeting the specified predetermined location is a significant factor to consider. Due to the ability to advance existing products and to develop new products in a variety of applications, the nanotechnology industry is considered an evolving technology. Cyclodextrin-based porous nanoparticles or unique nano-sponges (NSs) which have recently been used in the pharmaceutical, biomedical, and cosmetic industries are the main elements of this growth. This superior technology can circumvent the defects of current techniques by its ability to attack and visualize tumour sites. A biodegradable and biocompatible feature along with a built-in high surface area resulting in enormous amounts of drug loading and biomimetic design, and the ability to control nanoparticles size are just a handful of good attractive attributes that find this technique as an overwhelming advantage in the field of nanomedicine. This review article is organized such that we first explored the unique features of these nanosponges and the diverse methods for synthesizing, followed by the drug loading and release principle and application based on drug delivery, targeting, boosting solubility of BCS Class II and IV drugs, others in biomedicine and more. Finally, the recent progress on the use of biomimetic nanosponge as a pandemic tool due to the SARS-CoV-2 virus briefly comes into line.

Cite this article:
Natasha Verma, Annamalai Rama, Adrija Jha, Bhautik Ladani, Induja Govindan, Sivakumar Kannan, Srinivas Hebbar, Anup Naha. Nanosponges: Advancement in Nanotherapeutics. Research Journal of Pharmacy and Technology. 2022; 15(9):4253-0. doi: 10.52711/0974-360X.2022.00715

Natasha Verma, Annamalai Rama, Adrija Jha, Bhautik Ladani, Induja Govindan, Sivakumar Kannan, Srinivas Hebbar, Anup Naha. Nanosponges: Advancement in Nanotherapeutics. Research Journal of Pharmacy and Technology. 2022; 15(9):4253-0. doi: 10.52711/0974-360X.2022.00715   Available on:

1.    Chaudhary V., Royal A., Chavali M., Yadav SK. Advancements in research and development to combat COVID-19 using nanotechnology. Nanotechnol Environ Eng 2021;6(1):8. Doi: 10.1007/s41204-021-00102-7.
2.    Gupta SK. Study of Nanotechnology and Its Application. J Phys Opt Sci 2020;2(1):1–7. Doi: 10.47363/JPSOS/2020(2)107.
3.    Trotta F., Mele A. Nanomaterials: Classification and Properties. Nanosponges. Weinheim, Germany: Wiley-VCH Verlag GmbH and Co. KGaA; 2019. p. 1–26.
4.    Cecone C., Zanetti M., Anceschi A., Caldera F., Trotta F., Bracco P. Microfibers of microporous carbon obtained from the pyrolysis of electrospun β-cyclodextrin/pyromellitic dianhydride nanosponges. Polym Degrad Stab 2019;161:277–82. Doi: 10.1016/j.polymdegradstab.2019.02.001.
5.    Krabicová I., Appleton SL., Tannous M., et al. History of cyclodextrin nanosponges. Polymers (Basel) 2020;12(5):1122. Doi: 10.3390/POLYM12051122.
6.    Tejashri G., Amrita B., Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013;63(3):335–58. Doi: 10.2478/acph-2013-0021.
7.    Taka AL., Fosso-Kankeu E., Mbianda XY., Klink M., Naidoo EB. Nanobiocomposite Polymer as a Filter Nanosponge for Wastewater Treatment. Molecules 2021;26(13):3992. Doi: 10.3390/molecules26133992.
8.    Pallavi Sahebrao Ahire, Deepak S. Bhambere, Moreshwar P. Patil SJK. Recent Advances in Nanosponges as Drug Delivery System. INDIAN J DRUGS 2020;8(1):8–17. Doi: 10.37285/ijpsn.2013.6.1.3.
9.    Kendrick-Williams LL., Harth E. Second-Generation Nanosponges: Nanonetworks in Controlled Dimensions via Backbone Ketoxime and Alkoxyamine Cross-Links for Controlled Release. Macromolecules 2018;51(24):10160–6. Doi: 10.1021/acs.macromol.8b02244.
10.    Astle MA., Rance GA., Loughlin HJ., Peters TD., Khlobystov AN. Molybdenum Dioxide in Carbon Nanoreactors as a Catalytic Nanosponge for the Efficient Desulfurization of Liquid Fuels. Adv Funct Mater 2019;29(17):1808092. Doi: 10.1002/adfm.201808092.
11.    Tannous M., Caldera F., Hoti G., Dianzani U., Cavalli R., Trotta F. Drug-Encapsulated Cyclodextrin Nanosponges. vol. 2207. 2021. p. 247–83.
12.    Nitish., Jeganath S., Abdelmagid KFK. A review on nanosponges-A promising novel drug delivery system. Res J Pharm Technol 2021;14(1):501–5. Doi: 10.5958/0974-360x.2021.00091.3.
13.    Bilensoy E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications. Hoboken, NJ, USA: John Wiley and Sons, Inc.; 2011.
14.    Shastrulagari Shivani KKP. Nanosponges - Novel Emerging Drug Delivery System: a Review. Int J Pharm Sci Res 2015;Vol. 6(Issue 2):529-540. Doi: 10.13040/IJPSR.0975-8232.6(2).529-40.
15.    Radhika Parasuram Rajam, Kavin Raj Muthukumar. An Updated Comprehensive Review on Nanosponges – Novel Emerging Drug Delivery System. Research Journal of Pharmacy and Technology. 2021; 14(8):4476-4. doi: 10.52711/0974-360X.2021.00778
16.    Caldera F., Tannous M., Cavalli R., Zanetti M., Trotta F. Evolution of Cyclodextrin Nanosponges. Int J Pharm 2017;531(2):470–9. Doi: 10.1016/j.ijpharm.2017.06.072.
17.    Sri KV., Santhoshini G., Sankar DR., Niharika K. Formulation and Evaluation of Rutin Loaded Nanosponges. Asian J Res Pharm Sci 2018;8(1):21. Doi: 10.5958/2231-5659.2018.00005.x.
18.    Desai D., Shende P. Drug-Free Cyclodextrin-Based Nanosponges for Antimicrobial Activity. J Pharm Innov 2021;16(2):258–68. Doi: 10.1007/s12247-020-09442-4.
19.    Prabhu PP., Mehta CH., Nayak UY. Nanosponges-revolutionary approach: A review. Res J Pharm Technol 2020;13(7):3536–44. Doi: 10.5958/0974-360X.2020.00626.5.
20.    Cataldo S., Lo Meo P., Conte P., Di Vincenzo A., Milea D., Pettignano A. Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution. Carbohydr Polym 2021;267(February):118151. Doi: 10.1016/j.carbpol.2021.118151.
21.    Jain A., Prajapati SK., Kumari A., Mody N., Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J Drug Deliv Sci Technol 2020;57(December 2019):101643. Doi: 10.1016/j.jddst.2020.101643.
22.    Kumar S., Prasad M., Rao R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater Sci Eng C 2021;119:111605. Doi: 10.1016/j.msec.2020.111605.
23.    Francis DJE., Yusuf FS. Development and Evaluation of Nanosponges Loaded Extended Release Tablets of Lansoprazole. Univers J Pharm Res 2019;4(March):24–8. Doi: 10.22270/ujpr.v4i1.239.
24.    Kumar S., Rao R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J Incl Phenom Macrocycl Chem 2019;94(1–2):11–30. Doi: 10.1007/s10847-019-00903-z.
25.    Subramanian S., Singireddy A., Krishnamoorthy K., Rajappan M. Nanosponges: A novel class of drug delivery system - Review. J Pharm Pharm Sci 2012;15(1):103–11. Doi: 10.18433/j3k308.
26.    Khalid Q., Ahmad M., Minhas MU., Batool F., Malik NS., Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J Drug Deliv Sci Technol 2021;61:102089. Doi: 10.1016/j.jddst.2020.102089.
27.    Pawar S., Shende P., Trotta F. Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 2019;565(April):333–50. Doi: 10.1016/j.ijpharm.2019.05.015.
28.    Shende P., Kulkarni YA., Gaud RS., et al. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 2015;104(5):1856–63. Doi: 10.1002/jps.24416.
29.    Stevens DM., Gilmore KA., Harth E. An assessment of nanosponges for intravenous and oral drug delivery of BCS class IV drugs: Drug delivery kinetics and solubilization. Polym Chem 2014;5(11):3551–4. Doi: 10.1039/c4py00207e.
30.    Rao MRP., Chaudhari J., Trotta F., Caldera F. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. AAPS PharmSciTech 2018;19(5):2358–69. Doi: 10.1208/s12249-018-1064-6.
31.    Shringirishi M., Mahor A., Gupta R., Prajapati SK., Bansal K., Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2017;41:344–50. Doi: 10.1016/j.jddst.2017.08.005.
32.    Gharakhloo M., Sadjadi S., Rezaeetabar M., Askari F., Rahimi A. Cyclodextrin-Based Nanosponges for Improving Solubility and Sustainable Release of Curcumin. ChemistrySelect 2020;5(5):1734–8. Doi: 10.1002/slct.201904007.
33.    Harsha G., Shaik NB., Lakshmi PK., Latha K. Formulation and evaluation of sertaconazole nitrate loaded nanosponges for topical application. Res J Pharm Technol 2021;14(2):895–902. Doi: 10.5958/0974-360X.2021.00159.1.
34.    Farsana P., Sivakumar R., Haribabu Y. Hydrogel based nanosponges drug delivery for topical applications-A updated review. Res J Pharm Technol 2021;14(1):527–30. Doi: 10.5958/0974-360x.2021.00096.2.
35.    Bergal A., Elmas A., Akyüz G. A New Type and Effective Approach for Anti-Cancer Drug Delivery Application : Nanosponge Cyclodextrin Based Nanosponges ( Cd- Nss ). IMedPub Journals 2019;5(3):1–10. Doi: 10.36648/2471-9838.5.1.43.
36.    Matencio A., Rubin Pedrazzo A., Difalco A., et al. Advances and Classification of Cyclodextrin-Based Polymers for Food-Related Issues. Polymers (Basel) 2021;13(23):4226. Doi: 10.3390/polym13234226.
37.    Praveen K., Balamurugan K. Targeted drug delivery through nanosponges and its approach. Res J Pharm Technol 2020;13(7):3524–9. Doi: 10.5958/0974-360X.2020.00624.1.
38.    Shoaib QUA., Abbas N., Irfan M., et al. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen. Trop J Pharm Res 2018;17(8):1465–74. Doi: 10.4314/tjpr.v17i8.2.
39.    Rao MRP., Bhingole RC. Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug Dev Ind Pharm 2015;41(12):2029–36. Doi: 10.3109/03639045.2015.1044903.
40.    Trotta F., Caldera F., Cavalli R., et al. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease. Expert Opin Drug Deliv 2016;13(12):1671–80. Doi: 10.1080/17425247.2017.1248398.
41.    Shah HS., Nasrullah U., Zaib S., et al. Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules 2021;26(22):6990. Doi: 10.3390/molecules26226990.
42.    Ma X., Chen J., Zhu J., Yan N. Lignin-Based Polyurethane: Recent Advances and Future Perspectives. Macromol Rapid Commun 2021;42(3):2000492. Doi: 10.1002/MARC.202000492.
43.    Cavalli R., Akhter AK., Bisazza A., Giustetto P., Trotta F., Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010;402(1–2):254–7. Doi: 10.1016/j.ijpharm.2010.09.025.
44.    Shi J., Yu W., Xu L., et al. Bioinspired Nanosponge for Salvaging Ischemic Stroke via Free Radical Scavenging and Self-Adapted Oxygen Regulating. Nano Lett 2020;20(1):780–9. Doi: 10.1021/acs.nanolett.9b04974.
45.    Zhang Q., Honko A., Zhou J., et al. Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Lett 2020;20(7):5570–4. Doi: 10.1021/acs.nanolett.0c02278.
46.    Lambert G., Fattal E., Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 2001;47(1):99–112. Doi: 10.1016/S0169-409X(00)00116-2.
47.    Gholibegloo E., Mortezazadeh T., Salehian F., et al. Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. J Colloid Interface Sci 2019;556:128–39. Doi: 10.1016/j.jcis.2019.08.046.
48.    Zuruzi AS., MacDonald NC., Moskovits M., Kolmakov A. Metal oxide “nanosponges” as chemical sensors: Highly sensitive detection of hydrogen with nanosponge titania. Angew Chemie - Int Ed 2007;46(23):4298–301. Doi: 10.1002/anie.200700006.
49.    Simionato I., Domingues FC., Nerín C., Silva F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem Toxicol 2019;132(June):110647. Doi: 10.1016/j.fct.2019.110647.
50.    Silva F., Caldera F., Trotta F., Nerín C., Domingues FC. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Innov Food Sci Emerg Technol 2019;56(September 2018):102177. Doi: 10.1016/j.ifset.2019.102177.
51.    Wang F., Gao W., Thamphiwatana S., et al. Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant Staphylococcus aureus infection. Adv Mater 2015;27(22):3437–43. Doi: 10.1002/adma.201501071.
52.    Chen Y., Chen M., Zhang Y., et al. Broad-Spectrum Neutralization of Pore-Forming Toxins with Human Erythrocyte Membrane-Coated Nanosponges. Adv Healthc Mater 2018;7(13):1701366. Doi: 10.1002/adhm.201701366.
53.    Malik DJ., Webb C., Holdich RG., et al. Synthesis and characterization of size-selective nanoporous polymeric adsorbents for blood purification. Sep Purif Technol 2009;66(3):578–85. Doi: 10.1016/j.seppur.2009.01.016.
54.    Shah TN., Foley HC., Zydney AL. Development and characterization of nanoporous carbon membranes for protein ultrafiltration. J Memb Sci 2007;295(1–2):40–9. Doi: 10.1016/j.memsci.2007.02.030.
55.    Taka AL., Fosso-Kankeu E., Pillay K., Mbianda XY. Removal of cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: adsorption isotherm, kinetic, thermodynamic, and regeneration studies. Environ Sci Pollut Res 2018;25(22):21752–67. Doi: 10.1007/s11356-018-2055-6.
56.    Salazar S., Yutronic N., Kogan MJ., Jara P. Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan. Int J Mol Sci 2021;22(12):6446. Doi: 10.3390/ijms22126446.
57.    Sadhasivam J., Sugumaran A., Narayanaswamy D. Nano sponges: A potential drug delivery approach. Res J Pharm Technol 2020;13(7):3442–8. Doi: 10.5958/0974-360X.2020.00611.3.
58.    Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. J Biomater Sci Polym Ed 2021;32(9):1219–49. Doi: 10.1080/09205063.2021.1909412.
59.    Bilal J. S., Abhishek S. P., Ankush S. B., Indrayani D. R., Manojkumar M. N. Nanosponges: an Evolutionary Trend for Targeted Drug Delivery. Int J Pharm Sci Med 2021;6(6):1–14. Doi: 10.47760/ijpsm.2021.v06i06.001.
60.    Galatage ST., Hebalkar AS., Gote R V., Mali OR., Killedar SG. Silver nano particles by green synthesis: An overview. Res J Pharm Technol 2020;13(3):1503–10. Doi: 10.5958/0974-360X.2020.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available