Author(s): Hosam Eddin Shahrour, Sahar Al Fahom, Ghassan Al Massarani, Kenda Jawich, Ahmad Rasheed AlSaadi

Email(s): hosam.shahrour@damascusuniversity.edu.sy.

DOI: 10.52711/0974-360X.2022.00668   

Address: Hosam Eddin Shahrour1,2*, Sahar Al Fahom1,2,3, Ghassan Al Massarani4,5, Kenda Jawich1, Ahmad Rasheed AlSaadi6
1Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
2Al Rasheed International Private University for Science and Technology, Damascus, Syria.
3University of Kalamoon, Damascus, Syria.
4Department Radiation Medicine, Pharmacological Studies Division, Atomic Energy Commission of Syria.
(AECS), Damascus, Syria.
5International University of Science and Technology (IUST), Damascus, Syria.
6Department of Internal Medicine, Cardiovascular Disease Section, Faculty of Medicine Damascus University, Damascus, Syria.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022


ABSTRACT:
Background: New assumption concerning association of osteocalcin and Vascular calcification has emerged in reaction to observations that the mechanism of vascular calcification resembles that of bone mineralization, thus linking bone and the vasculature. However, studies reported contrasting results about the association between osteocalcin and atherosclerosis. This study was designed to evaluate capacity relationships among different forms of circulating osteocalcin and cardiovascular risk markers in male with coronary atherosclerosis. Methods: A cross-sectional study was conducted on 58 male patients, divided into two groups according to the severity of coronary artery disease (CAD), as determined by coronary angiography assessment: Early coronary atherosclerosis (ECA), n=20, patients with mild CAD (<50% stenosis in any major epicardial arteries), and late coronary atherosclerosis (LCA), n=38, patients with severe, multivessel CAD (>50% stenosis in at least one or more major epicardial arteries). The healthy control (HC) group included 26 healthy male subjects. Carboxylated (cOC) and ucOC were measured using ELISA technique. Results: We observed significantly lower ucOC levels in both stages of cardiovascular disease (CVD) (ECA and LCA) compared to the HC group (2.34±2.23 and 2.48±1.60 vs 6.65±1.78ng/mL, P<0.01). ucOC was inversely correlated with an increasing number of cardiovascular risk factors (CVRFs). Moreover, ucOC levels were markedly reduced in high-fasting plasma glucose (FPG) groups (IFG and T2DM-threshold level), compared to the normal FPG group (NG). cOC levels were higher in the IFG group, compared to the normal FPG group (8.50±4.76 vs 7.13±3.13ng/mL, p=0.008) possibly predicting such condition. Conclusions: In the present study, patients with coronary atherosclerosis, regardless of the onset of stenosis, showed lower ucOC levels which were inversely correlated with an increasing number of CVRFs. Moreover, ucOC levels were markedly reduced in high-FPG groups. Serum ucOC may be considered as a potential biomarker for coronary atherosclerosis disease and therefore its measurement may help to establish preventive and therapeutic approaches. Moreover, cOC may be associated with a high alert for diabetes at the IFG stage, but not when the disease progresses to diabetes.


Cite this article:
Hosam Eddin Shahrour, Sahar Al Fahom, Ghassan Al Massarani, Kenda Jawich, Ahmad Rasheed AlSaadi. Serum Carboxylated and Undercarboxylated Osteocalcin association with Coronary Atherosclerosis Disease and Cardiovascular Risk Markers in: Analysis of a Syrian Male Cohort. Research Journal of Pharmacy and Technology. 2022; 15(9):3987-2. doi: 10.52711/0974-360X.2022.00668

Cite(Electronic):
Hosam Eddin Shahrour, Sahar Al Fahom, Ghassan Al Massarani, Kenda Jawich, Ahmad Rasheed AlSaadi. Serum Carboxylated and Undercarboxylated Osteocalcin association with Coronary Atherosclerosis Disease and Cardiovascular Risk Markers in: Analysis of a Syrian Male Cohort. Research Journal of Pharmacy and Technology. 2022; 15(9):3987-2. doi: 10.52711/0974-360X.2022.00668   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-9-28


REFERENCE:
1.    Kaur S. A Descriptive Study to Assess the Prevalence of Cardiovascular risk factors among Adolescents in Selected Schools of Banga, District Shaheed Bhagat Singh Nagar, Punjab. Asian J. Nur. Edu. and Research, 2016. 6(3): p. 361-370. DOI: 10.5958/2349-2996.2016.00068.9.
2.    Mounika S. and D. Gopinath. Periodontitis as a Risk Factor of Atherosclerosis. Research J. Pharm. and Tech, 2016. 9(11): p. 2017-2019. DOI.
3.    Katakami N. H. Kaneto, and I. Shimomura. Carotid ultrasonography: A potent tool for better clinical practice in diagnosis of atherosclerosis in diabetic patients. Journal of Diabetes Investigation, 2014. 5. DOI: 10.1111/jdi.12106.
4.    Prabha J.L. and M. Sankar. Role of Il-1 in Atherosclerosis. Research J. Pharm. and Tech, 2018. 11(7): p. 3163-3166. DOI: 10.5958/0974-360X.2018.00581.4.
5.    Jadhav K.L., et al. Genetic Insights of Cholesterol and Atherosclerosis: Complex Biology. Asian J. Pharm. Res., 2018. 8(3): p. 175-184. DOI.
6.    Jadhav K.L., et al. Genetic Insights of Cholesterol and Atherosclerosis: Complex Biology. Asian J. Pharm. Res. 2018. 175-184(3). DOI.
7.    Baragetti A., et al. Effect of Lipids and Lipoproteins on Hematopoietic Cell Metabolism and Commitment in Atherosclerosis. Immunometabolism, 2021. 3(2): p. e210014. DOI: 10.20900/immunometab20210014.
8.    Dib S. and R. Makhous. Research J. Pharm. and Tech. 13(5): p. 2329-2334. DOI.
9.    Wihastuti T.A., et al. Polysaccharide Peptide (PsP) of Ganoderma lucidum as vasa vasorum anti-Angiogenesis agent in Dyslipidemic state by Measuring Lp-PLA2 and H2O2 Levels. Research J. Pharm. and Tech., 2020. 13(7): p. 3241-3245. DOI.
10.    Laroche M., et al. Osteoporosis and ischemic cardiovascular disease. Joint Bone Spine, 2016. 84. DOI: 10.1016/j.jbspin.2016.09.022.
11.    Johnson R.C. J.A. Leopold, and J. Loscalzo. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res, 2006. 99(10): p. 1044-59. DOI: 10.1161/01.res.0000249379.55535.21.
12.    Lee N.K., et al. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007. 130(3): p. 456-69. DOI: 10.1016/j.cell.2007.05.047.
13.    Riddle R.C. and T.L. Clemens. Bone Cell Bioenergetics and Skeletal Energy Homeostasis. Physiological Reviews, 2017. 97(2): p. 667-698. DOI: 10.1152/physrev.00022.2016.
14.    Liu J.M., et al. Regulation of Glucose Handling by the Skeleton: Insights From Mouse and Human Studies. Diabetes, 2016. 65(11): p. 3225-3232. DOI: 10.2337/db16-0053.
15.    Ferron M., et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone, 2012. 50(2): p. 568-75. DOI: 10.1016/j.bone.2011.04.017.
16.    Liu D.M., et al. Association between osteocalcin and glucose metabolism: a meta-analysis. Osteoporos Int, 2015. 26(12): p. 2823-33. DOI: 10.1007/s00198-015-3197-8.
17.    Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia, 2011. 54(6): p. 1291-7. DOI: 10.1007/s00125-011-2155-z.
18.    Zoch M.L. T.L. Clemens, and R.C. Riddle. New insights into the biology of osteocalcin. Bone, 2016. 82: p. 42-9. DOI: 10.1016/j.bone.2015.05.046.
19.    Kumar M.P.S. and T. Nandhini. Mechanism of action of Bone Morphogenic Protein 3 in the maintenance of Tissue Homeostasis.  Research J. Pharm. and Tech, 2018. 11(3): p. 1270-1274. DOI.
20.    Hauschka P.V., et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev, 1989. 69(3): p. 990-1047. DOI.
21.    Gundberg C.M., et al. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab, 1998. 83(9): p. 3258-66. DOI: 10.1210/jcem.83.9.5126.
22.    Shao J., et al. Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin. International journal of endocrinology, 2015. 2015: p. 967673. DOI: 10.1155/2015/967673.
23.    Karsenty G. and F. Oury. Regulation of male fertility by the bone-derived hormone osteocalcin. Molecular and cellular endocrinology, 2014. 382(1): p. 521-526. DOI: 10.1016/j.mce.2013.10.008.
24.    Millar S., et al. Osteocalcin, Vascular Calcification, and Atherosclerosis: A Systematic Review and Meta-analysis. Frontiers in Endocrinology, 2017. 8: p. 183. DOI: 10.3389/fendo.2017.00183.
25.    Sanchez-Enriquez S., et al. Serum levels of undercarboxylated osteocalcin are related to cardiovascular risk factors in patients with type 2 diabetes mellitus and healthy subjects. World journal of diabetes, 2017. 8(1): p. 11-17. DOI: 10.4239/wjd.v8.i1.11.
26.    Magni P., et al. Osteocalcin as a potential risk biomarker for cardiovascular and metabolic diseases. Clinical chemistry and laboratory medicine, 2016. 54. DOI: 10.1515/cclm-2015-0953.
27.    Zhang M., et al. Undercarboxylated osteocalcin as a biomarker of subclinical atherosclerosis in non-dialysis patients with chronic kidney disease. J Biomed Sci, 2015. 22: p. 75. DOI: 10.1186/s12929-015-0183-6.
28.    Razzaque M.S. Osteocalcin: a pivotal mediator or an innocent bystander in energy metabolism? Nephrol Dial Transplant, 2011. 26(1): p. 42-5. DOI: 10.1093/ndt/gfq721.
29.    Tacey A., et al. Potential Role for Osteocalcin in the Development of Atherosclerosis and Blood Vessel Disease. Nutrients, 2018. 10(10): p. 1426. DOI: 10.3390/nu10101426.
30.    Millar S.A., et al. Osteocalcin, Vascular Calcification, and Atherosclerosis: A Systematic Review and Meta-analysis. Frontiers in Endocrinology, 2017. 8(183). DOI: 10.3389/fendo.2017.00183.
31.    Polgreen L.E., et al. Association of Osteocalcin With Obesity, Insulin Resistance, and Cardiovascular Risk Factors in Young Adults. Obesity, 2012. 20(11): p. 2194-2201. DOI: https://doi.org/10.1038/oby.2012.108.
32.    Razny U., et al. Carboxylated and undercarboxylated osteocalcin in metabolic complications of human obesity and prediabetes. Diabetes Metab Res Rev, 2017. 33(3). DOI: 10.1002/dmrr.2862.
33.    Ingram R.T., et al. Age- and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling. The Journal of clinical investigation, 1994. 93(3): p. 989-997. DOI: 10.1172/JCI117106.
34.    Sofihussein H.Q., et al. Effect of Vitamin D supplement on the risks of Cardiovascular disease in patients with type 2 diabetes in the Kurdistan Region of Iraq. Research J. Pharm. and Tech, 2020. 13: p. 4125-4129. DOI: 10.5958/0974-360X.2020.00728.3.
35.    Ferron M., et al. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A, 2008. 105(13): p. 5266-70. DOI: 10.1073/pnas.0711119105.
36.    Gössl M., et al. Coronary endothelial dysfunction in humans is associated with coronary retention of osteogenic endothelial progenitor cells. European heart journal, 2010. 31: p. 2909-14. DOI: 10.1093/eurheartj/ehq373.
37.    Kanazawa I., et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab, 2009. 94(1): p. 45-9. DOI: 10.1210/jc.2008-1455.
38.    Bilotta F.L., et al. Insulin and osteocalcin: further evidence for a mutual cross-talk. 2018. 59(3): p. 622-632. DOI: 10.1007/s12020-017-1396-0.
39.    Tacey A., et al. Osteocalcin and vascular function: is there a cross-talk? Molecular Metabolism, 2021. 49: p. 101205. DOI: https://doi.org/10.1016/j.molmet.2021.101205.
40.    De Pergola G., et al. Independent Relationship of Osteocalcin Circulating Levels with Obesity, Type 2 Diabetes, Hypertension, and HDL Cholesterol. Endocr Metab Immune Disord Drug Targets, 2016. 16(4): p. 270-275. DOI: 10.2174/1871530317666170106150756.
41.    Lee N.K., et al. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007. 130(3): p. 456-469. DOI: 10.1016/j.cell.2007.05.047.
42.    Pollock N.K., et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. J Clin Endocrinol Metab, 2011. 96(7): p. E1092-9. DOI: 10.1210/jc.2010-2731.
43.    Prats-Puig A., et al. Carboxylation of osteocalcin affects its association with metabolic parameters in healthy children. Diabetes Care, 2010. 33(3): p. 661-3. DOI: 10.2337/dc09-1837.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available