Author(s): Safira Dita Arviana, Yuyun Yueniwati, Masruroh Rahayu, Mokhamad Fahmi Rizki Syaban


DOI: 10.52711/0974-360X.2022.00667   

Address: Safira Dita Arviana1*, Yuyun Yueniwati2, Masruroh Rahayu3, Mokhamad Fahmi Rizki Syaban4
1Master Program in Biomedical Science, Faculty of Medicine, Brawijaya Univesity, Malang, Indonesia.
2Department of Radiology, Saiful Anwar General Hospital, Faculty of Medicine, Brawijaya University, Malang, Indonesia.
3Department of Neurology, Saiful Anwar General Hospital, Faculty of Medicine, Brawijaya University, Malang, Indonesia.
4Faculty of Medicine, Brawijaya Univesity, Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022

Stroke is one of the leading causes of death worldwide, particulary ischemic stroke. Tissue hypoxia due to decreased blood flow to the brain causes loss of energy, failure of homeostasis, and cell death. Pharmacological treatment based of the Food and Drug Administration is recombinant tissue plasminogen activator given intravenously. In addition, neuroprotectant agents given to prevent the expansion of the infarct area. Screening of a new compound as a drug candidate with in silico simulation to predict an interaction between 7,8-dihydroxiflavone (DHF) as a neuroprotective agent by stimulating a protein kinase through PI3K signaling pathway and inhibiting the activity of prolyl hydroxylase enzyme. The protein target was obtained from Protein Data Bank using the structure of PI3K (1E8X) and prolyl hydroxylase 2 (5OX6). Ligand structure of 7,8 dihydroxyflavone was obtained from PubChem. Those structures are analyzed for the pharmacokinetic and protein-ligand interaction with the help of software such as PyRx, PyMol and BIOVIA Discovery Studio. 7,8 DHF has a much lower bond energy (-8.6 Kcal/mol) when it binds to PI3K compared to the native ligand (-7.5 Kcal/mol). The same bond energy results between 7,8-DHF and its native ligands (-7.5 kcl/mol) when binds to prolyl hydroxylase. As an adaptive response to hypoxia caused by ischemic stroke, the findings are likely to boost the downstream signaling pathway and enhance HIF-1a expression.

Cite this article:
Safira Dita Arviana, Yuyun Yueniwati, Masruroh Rahayu, Mokhamad Fahmi Rizki Syaban. 7,8-dihydroxyflavone as a Neuroprotective agent in Ischemic Stroke through the Regulation of HIF-1α Protein. Research Journal of Pharmacy and Technology. 2022; 15(9):3980-6. doi: 10.52711/0974-360X.2022.00667

Safira Dita Arviana, Yuyun Yueniwati, Masruroh Rahayu, Mokhamad Fahmi Rizki Syaban. 7,8-dihydroxyflavone as a Neuroprotective agent in Ischemic Stroke through the Regulation of HIF-1α Protein. Research Journal of Pharmacy and Technology. 2022; 15(9):3980-6. doi: 10.52711/0974-360X.2022.00667   Available on:

1.    Johnson W. Oyere O. Mayowa O and Sonal S. Stroke: A Global Response is Needed. Bulletin of the World Health Organization. 2016; 94. doi:
2.    Hankey GJ. Stroke. The Lancet. 2017; 389: 641–654. doi: 10.1016/S0140-6736(16)30962-X.
3.    Balaguru T. Effectiveness of Comprehensive Nursing Rehabilitation Programme of Life among Patient with Post – Acute Stroke – Pilot Study. Int. J. Nur. Edu. and Research. 2016: 4(4): 431-436. doi: 10.5958/2231–5713
4.    Benjamin EJ. Blaha MJ. Chiuve SE. Cushman M. Das SR. Deo R. de Ferranti SD et al. Heart-Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation. 2017; 135: 10.
5.    Shi X. Wang J. Le Y. Cong C. Tan D and Zhou X. Research Progress on The PI3K/AKT Signaling Pathway In Gynecological Cancer (Review). Molecular Medicine Reports. 2019.
6.    Jha SK. Jha NK. Kar R. Ambasta RK. Kumar P. p38 MAPK and PI3K/AKT Signalling Cascades in Parkinson's Disease. Int J Mol Cell Med. 2015; 4: 67-86. PMID: 26261796; PMCID: PMC4499569.
7.    Zhang Z. Yao L. Yang J. Wang Z and Du G. PI3K/Akt and HIF‑1 Signaling Pathway in Hypoxia‑Ischemia (Review). Molecular Medicine Reports. 2018.
8.    Davis CK. Jain SA. Bae ON. Majid A and Rajanikant GK. Hypoxia Mimetic Agents for Ischemic Stroke. Frontiers in Cell and Developmental Biology. 2019; 6. doi:10.3389/fcell.2018.00175
9.    Lippl K. Boleininger A. McDonough M. Abboud MI. Tarhonskaya H. Chowdhury R. Loenarz C and Schofield CJ. Born to Sense: Biophysical Analyses of The Oxygen Sensing Prolyl Hydroxylase from The Simplest Animal Trichoplax Adhaerens. Hypoxia. 2018; 6: 57–71
10.    Fan L. Li J. Yu Z. Dang X and Wang K. The Hypoxia-Inducible Factor Pathway, Prolyl Hydroxylase Domain Protein Inhibitors, and Their Roles in Bone Repair and Regeneration. BioMed Research International. 2014; 2014: 1–11
11.    Chowdhury R. Leung IKH. Tian YM. Abboud MI. Ge W. Domene C. Cantrelle FX. Landrieu I. Hardy AP. Pugh CW. Ratcliffe PJ. Claridge TDW and Schofield CJ Structural Basis for Oxygen Degradation Domain Selectivity of The HIF Prolyl Hydroxylases. Nature Communications. 2016; 7: 12673
12.    Herawati M. Wardaya. Mulyawan W. Farhan FS. Ferdinal F. Jusman SWA and Sadikin M. Expression of Hypoxia-Inducible Factor-1α and Myoglobin in Rat Heart as Adaptive Response to Intermittent Hypobaric Hypoxia Exposure. HAYATI Journal of Biosciences. 2017; 24: 131–135
13.    Yu T. Tang B and Sun X. Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Medical Journal. 2017; 58: 489
14.    Amalia L. Sadeli HA. Parwati I. Rizal A and Panigoro R. Hypoxia-Inducible Factor-1α in Acute Ischemic Stroke: Neuroprotection for better clinical outcome. Heliyon. 2020; 6: e04286.
15.    Emili M. Guidi S. Uguagliati B. Giacomini A. Bartesaghi R and Stagni F. Treatment with the flavonoid 7,8-Dihydroxyflavone: A promising strategy for a constellation of body and brain disorders. Critical Reviews in Food Science and Nutrition. 2020; pp. 1–38.
16.    Ahmed SS. Chandra PK. Tabassum S. Salma N and Ahalya DKH. Pharmacognostical and Pharmacological Review on Tridax procumbens Linn. Res.J. Pharmacology and Pharmacodynamics. 2019; 11(1): 11-16. doi: 10.5958/2321-5836.2019.00003.X
17.    Rahman PA. Syaban MFR. Anoraga SG. Sabila FL. Molecular Docking Analysis from Bryophyllum pinnatum Compound as A COVID-19 Cytokine Storm Therapy. Open Access Maced J Med Sci. 2022;10:779–84.
18.    Pinzi L and Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences. 2019; 20: 4331.
19.    Syaban MFR. Erwan NE. Syamsuddin MRR. Zahra AF. Sabila FL. Insilico Study and Analysis Antibacterial Activity of Beta-glucan against Beta-Lactamase and Protein Binding Penicillin-2A. Research Journal of Pharmacy and Technology. 2022; 15(5):1948-2.
20.    Syaban MFR. Faratisha IFD. Yunita KC, Erwan E. Kurniawan DB. Putra GFA. Molecular Docking and Interaction Analysis of Propolis Compounds Against SARS-CoV-2 Receptor. Journal of Tropical Life Science. 2022;12(2):12.
21.    Yuniwati Y. Syaban M. Anoraga S. Sabila F. Molecular Docking Approach of Bryophyllum Pinnatum Compounds as Atherosclerosis Therapy By Targeting Adenosine Monophosphate-Activated Protein Kinase and Inducible Nitric Oxide Synthase. Acta Inform Medica. 2022;30(1):91. doi:10.5455/aim.2022.30.91-95
22.    Huang H. Chu CL. Chen L and Shui D. Evaluation of potential inhibitors of squalene synthase based on virtual screening and in vitro studies. Computational Biology and Chemistry. 2019; 80: 390–397.
23.    Jenifer D. Sinclair BJ. Shanmugasundaram S. Dietary Flavonoids as Competitive Inhibitors of Covid 19 Major Protease. Res. J. Pharmacognosy and Phytochem. 2020; 12(4): 261-266. doi: 10.5958/0975-4385.2020.00043.6
24.    Yueniwati Y. Syaban MFR. Erwan NE. Putra GFA and Krisnayana AD. Molecular Docking Analysis of Ficus religiosa Active Compound with Anti-Inflammatory Activity by Targeting Tumour Necrosis Factor Alpha and Vascular Endothelial Growth Factor Receptor in Diabetic Wound Healing. Open Access Maced J Med Sci. 2021; 9(A):1031-6.
25.    Kumarachari R. Peta S. Surur A and Mekonnen Y. Synthesis, Characterization and In Silico Biological Activity of Some 2-(N,N-dimethyl guanidinyl)-4,6-diaryl pyrimidines. Journal of Pharmacy and Bioallied Sciences. 2016; 8: 181
26.    Syaban MFR. Muhammad RF. Adnani B. et al. Molecular Docking Studies of Interaction Curcumin against Beta-secretase 1, Amyloid A4 Protein, Gamma-secretase and Glycogen Synthase Kinase- 3β as Target Therapy for Alzheimer Disease.  Research Journal of Pharmacy and Technology. 2022;  15(7):3074.
27.    Rithiga SB. Shanmugasundaram S. Virtual Screening of Pentahydroxyflavone – A Potent COVID Major Protease Inhibitor. Asian J. Res. Pharm. Sci. 2021: 11(1): 7-14. doi:10.5958/2231-5659.2021.0002.3
28.    Pawar SS. Rohane SH. Review on Discovery Studio: An Important Tool for Molecular Docking. Asian J. Research Chem. 2021; 14(1): 86-88. doi: 10.5958/0974-4150.2021.00014.6
29.    Syaban MFR. Erwan NE. Syamsuddin MRR. Zahra FA and Sabila FL. Molecular Docking Approach of Viscosin as Antibacterial for Methicillin-resistant Staphylococcus Aureus Via β-Lactamase Inhibitor Mechanism. Clinical and Research Journal in Internal Medicine. 2021; 2(2):186-191.
30.    Yuan S. Chan HCS and Hu Z. Using PYMOL as a Platform for Computational Drug Design. WIREs Computational Molecular Science. 2017; 7(2).
31.    Syaban MFR. Rachman HA. Arrahman AD. Hudayana N. Khamid JP and Pratama FA. Allium Sativum as Antimalaria Agent via Falciapin Protease-2 Inhibitor Mechanism: Molecular Docking Perspective. Clinical and Research Journal in Internal Medicine 2021; 2: 130-135
32.    Gunawan SG. Farmakologi dan Terapi Vol. 6. Jakarta: Balai Penerbit FKUI. 2017
33.    Wanat K. Biological Barriers, and the Influence of Protein Binding on the Passage of Drugs Across Them. Molecular Biology Reports 2020; 47: 3221–3231
34.    La Kilo A. Aman LO. Sabihi I and La KJ. Studi Potensi Pirazolin Tersubstitusi 1-N dari Thiosemicarbazone sebagai Agen Antiamuba melalui Uji In Silico. Indo. J. Chem. Res. 2019; 7: 9–24.
35.    Xue X. Zhao N. Yu H. Sun Y. Kang C. Huang Q. Sun H. Wang X and Li N. Discovery of novel inhibitors disrupting HIF-1α/von Hippel–Lindau interaction through shape-based screening and cascade docking. PeerJ. 2016; 4:e2757; DOI 10.7717/peerj.27
36.    Knight M and Stanley S. HIF-1α as a central mediator of cellular resistance to intracellular pathogens. Curr Opin Immunol. 2019; 60: 111-116. doi:10.1016/j.coi.2019.05.005
37.    Chitranshi N. Gupta V. Kumar S and Graham S. Exploring the Molecular Interactions of 7,8-Dihydroxyflavone and Its Derivatives with TrkB and VEGFR2 Proteins. International Journal of Molecular Sciences. 2016; 16: 21087–21108
38.    Thomas P. Jeyarani SV. Choephel T. Manisha C and Antony J. Recent Based Remedies for Alzheimer’s Disease, Parkinson’s Disease and Cerebral Ischemic Stroke. Research J. Pharm. And Tech 2019; 12(8): 3951-3959. doi: 10.5958/0974-360X.2019.00681.4
39.    Mitra A. Ray A. Datta R. Sengupta S. and Sarkar S. Cardioprotective Role of P38 MAPK During Myocardial Infarction Via Parallel Activation of α-Crystallin B and Nrf2. Journal of Cellular Physiology. 2014; 229: 1272–1282.  doi:10.1002/jcp.24565
40.    Kurniawan DB. Syaban MFR. Mufidah A. Zulfikri MUR. Riawan W. Protective Effect of Saccharomyces cerevisiae in Rattus norvegicus Ischemic Stroke Model. Research J. Pharm. And Tech. 2021; 14(11):5785-5789
41.    Kharisma V and Nugraha A. Computational Study of Ginger (Zingiber Officinale) as E6 Inhibitor in Human Papillomavirus Type 16 (HPV-16) Infection. Biochemical and Cellular Archives. 2020; 20: 3155–3159.
42.    Wang DX and Wang MX. Anion−π Interactions: Generality, Binding Strength, and Structure. Journal of the American Chemical Society. 2013; 135: 892–897
43.    Silva RFN. Sacco ACS. Caracelli I. Zukerman-Schpector J and Tiekink ERT. Sulfur(lone-pair)…π interactions with FAD in flavoenzymes. Zeitschrift Für Kristallographie - Crystalline Materials. 2018; 233: 531–537.
44.    Zhao Y. Li J. Gu H. Wei D. Xu Y. Fu W and Yu Z. Conformational Preferences of π–π Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of π–π Interaction. Interdisciplinary Sciences: Computational Life Sciences. 2015; 7: 211–220
45.    Arthur DE and Uzairu A. Molecular Docking Studies on the Interaction of NCI Anticancer Analogues with Human Phosphatidylinositol 4,5-Bisphosphate 3-Kinase Catalytic Subunit. Journal of King Saud University – Science. 2019; 31: 1151–1166.
46.    Simon JP. Ashok G. Saju MT. Tomas M and Sabina EP. GC-MS Analysis of the Leaf Extract of Swertia chirata and its In-silico Binding Affinity Against Toxicity Receptor. Research J. Pharm. And Tech 2021; 14(3): 1622-1628. doi: 10.5958/0974-360X.2021.00288.2
47.    Yueniwati Y, Rizki Syaban MF, Faratisha IFD, Yunita KC, Kurniawan DB, Putra GFA, Erwan NE. Molecular Docking Approach of Natural Compound from Herbal Medicine in Java against Severe Acute Respiratory Syndrome Coronavirus-2 Receptor. Open Access Maced J Med Sci [Internet]. 2021 Dec. 9 [cited 2021 Dec. 19]; 9(A):1181-6. Available from:
48.    Bernaldez MJA. Billones JB and Magpantay A. In Silico Analysis of Binding Interactions Between GSK983 and Human DHODH through Docking and Molecular Dynamics. 2018:

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available