Author(s): Balram, Pawan Jalwal, Gurvirender Singh


DOI: 10.52711/0974-360X.2022.00656   

Address: Balram1,2, Pawan Jalwal1, Gurvirender Singh2
1Institute of Pharmaceutical Sciences, Baba Mastnath University, Rohtak, Haryana, (India).
2Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, (India).
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022

The study was planned to trace out connection among receptors responsible for the development of diabetes mellitus and active constituents of Rhus parviflora by in silico and in vitro methods. A molecular docking study was carried out for selected compounds after screening of all chemical constituents present in plant. Initial screening was carried through Lipinski’s rule of five along with ADME study of the reported phytoconstituents. For estimation of Antidiabetic potential of all selected constituent total 6 PDB namely 1IR3 (Insulin receptor), 1US0 (Aldose Reductase), 2FV6 (Protein tyrosine phosphatase 1), 2OQV (Human Dipeptidyl Peptidase IV) 2QV4 (a-amylase), 5NN6 (a- glucosidase) were selected. Molegro Virtual Docker tool was employed for the Molecular Docking studies. 4’-O-beta-D-Glucosyl-cis-p-coumaric acid, Kaempferol, Myrecetin, Quercetin, Taxifolin, and Isorhamnetin exhibited efficient hydrogen bonding as well as mol dock score with all selected 6 receptor PDB in contrast to standard drug Glibenclamide. In vitro study results of RPME exhibited 60.58±0.6, 54.64±2.46 percent inhibition in a- Glucosidase Inhibition Assay and a- Amylase Inhibition Assay, in contrast standard acarbose exhibited 71.35±1.84 and 67.76±1.97 percent inhibition respectively. The entire study gives understanding that chosen plant presumably has antidiabetic potential because of considered biomarkers.

Cite this article:
Balram, Pawan Jalwal, Gurvirender Singh. In silico and invitro Antidiabetic Characterization and ADME Studies of Rhus parviflora. Research Journal of Pharmacy and Technology. 2022; 15(9):3919-3. doi: 10.52711/0974-360X.2022.00656

Balram, Pawan Jalwal, Gurvirender Singh. In silico and invitro Antidiabetic Characterization and ADME Studies of Rhus parviflora. Research Journal of Pharmacy and Technology. 2022; 15(9):3919-3. doi: 10.52711/0974-360X.2022.00656   Available on:

1.    Shaw JE. Chisholm DJ. Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. Medical Journal of Australia. 2003; 179(7): 379-383.
2.    Guillausseau PJ. Meas T. Virally M. Laloi-Michelin M. Médeau V. Kevorkian JP. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes & Metabolism. 2008; 1(34): S43-48.
3.    Oakes ND. Cooney GJ. Camilleri S. Chisholm DJ. Kraegen EW. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 1997; 46(11): 1768-1774.
4.    Kharroubi AT. Darwish HM. Diabetes mellitus: The epidemic of the century. World Journal of Diabetes. 2015; 6(6): 850. 10.4239/wjd.v6.i6.850
5.    Ahmed AM. History of diabetes mellitus. Saudi Medical Journal. 2002;  23(4):373-378.
6.    Dei CA. Fonarow GC. Gheorghiade M. Butler J. Concomitant diabetes mellitus and heart failure. Current Problems in Cardiology. 2015; 40(1):7-43.  10.1016/j.cpcardiol.2014.09.002
7.    Verspohl EJ. Novel pharmacological approaches to the treatment of type 2 diabetes. Pharmacological Reviews. 2012; 64(2):188-237.  10.1124/pr.110.003319
8.    Jacob B. Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: a review. Biotech. 2019; 9(1):1-7.
9.    Hassan IM. Saidu B. Dahiru A. Abdulazeez N. Yusuf HI. Tosin AH. Pilau NN et al. Ameliorative Effect of Moringa Oleifera Biochemical Constituents on Blood Glucose Level of Streptozocin-Induced Diabetic Wistar Rats. Advances in Biochemistry. 2021; 9(1):6.
10.    Tiwari AK. Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present Status and Future Prospects. Current Science. 2002; 10:30-38.
11.    Maher Zahran E. Ramadan Abdelmohsen U. M Shalash M. Ezzat Khalil H. Alaraby Salem M. Local anaesthetic potential, metabolic profiling, molecular docking and in silico ADME studies of Ocimum forskolei, family Lamiaceae.
12.    Setyawan TB. Oressa E. Tamba TA. Nazaruddin YY. A Structural Output Controllability Approach to Drug Efficacy Prediction. In 2019 12th Asian Control Conference (ASCC) 2019; 9: 97-102. IEEE.
13.    Huang N. Shoichet BK. Irwin JJ. Benchmarking sets for molecular docking. Journal of Medicinal Chemistry. 2006; 49(23):6789-6801.
14.    Li JW. Vederas JC. Drug discovery and natural products: end of an era or an endless frontier?. Science. 2009; 325(5937):161-165.
15.    Shrestha S. Park JH. Lee DY. Cho JG. Cho S. Yang HJ. Yong al. Rhus parviflora and its biflavonoid constituent, rhusflavone, induce sleep through the positive allosteric modulation of GABAA-benzodiazepine receptors. Journal of Ethnopharmacology. 2012;  142(1):213-220.
16.    Panwar M. Laxmi V. Chand D. Nautiyal MC. Antimicrobial Potential of Acetone and Methanol extracts of Rhus parviflora Roxb. Indian Journal of Forestry. 2016;39(3):1-4.
17.    Modi M. Pancholi B. Kulshrestha S. Rawat AK. Malhotra S. Gupta SK. Anti-HIV-1 activity, protease inhibition and safety profile of extracts prepared from Rhus parviflora. BMC Complementary and Alternative Medicine. 2013;13(1):1-9.
18.    Shrestha S. Lee DY. Park JH. Cho JG. Lee DS. Li B. Kim YC et al. Flavonoids from the fruits of Nepalese sumac (Rhus parviflora) attenuate glutamate-induced neurotoxicity in HT22 cells. Food Science and Biotechnology. 2013;22(4):895-902.
19.    Shrestha S. Park JH. Lee DY. Cho JG. Seo WD. Kang HC. Yoo KH et al. Cytotoxic and neuroprotective biflavonoids from the fruit of Rhus parviflora. Journal of the Korean Society for Applied Biological Chemistry. 2012; 55(4):557-562.
20.    Khare CP. Ayurvedic Pharmacopoeial Plant Drugs: Expanded Therapeutics. CRC Press. 2015;18.
21.    Bhakuni DS. Satish S. Shukla YN. Tandon JS. Chemical constituents of Diospyros buxifolia, D. tomentosa, D. ferra, D. lotus, Rhus parviflora, Polygonum recumbens, Balanites aegyptiaca and Pyrus pashia. Phytochemistry. 1971; 10(11):2829-2831.
22.    Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research. 2019; 47(D1):D1102-1109.
23.    Cousins KR. Computer review of ChemDraw ultra 12.0.
24.    O'Boyle NM. Banck M. James CA. Morley C. Vandermeersch T. Hutchison GR. Open Babel: An open chemical toolbox. Journal of Cheminformatics. 2011;3(1):1-4.
25.    Csizmadia P. MarvinSketch and MarvinView: molecule applets for the World Wide Web.
26.    Kaushik P. Lal Khokra S. Rana AC. Kaushik D. Pharmacophore modeling and molecular docking studies on Pinus roxburghii as a target for diabetes mellitus. Advances in Bioinformatics. 2014; 1-8.
27.    Sterling T. Irwin JJ. ZINC 15–ligand discovery for everyone. Journal of Chemical Information and Modeling. 2015; 55(11):2324-2337.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available