Author(s): V. Nagalakshmi, J. Lavanya, B. Bhavya, V. Riya, B. Venugopal, A. Sai Ramesh


DOI: 10.52711/0974-360X.2022.00653   

Address: V. Nagalakshmi1, J. Lavanya2, B. Bhavya3, V. Riya4, B. Venugopal5, A. Sai Ramesh6*
1Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh.
2Sri Padmavathi Mahila Viswavidyalayam University, Tirupati, Andhra Pradesh.
3Jamia Hamdard University, Hamdard Nagar, Delhi.
4Integral University, Kursi Road, Lucknow, Uttar Pradesh.
5University College of Arts and Science, Telangana University, Nizamabad, Telangana.
6Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi-Vel Tech Road, Chennai, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022

In-silico characterization and molecular modelling of a single amino acid substitution in HGD (Homogentisate 1,2dioxygenase) gene are mainly caused by the deficiency of enzyme Homogentisate 1,2dioxygenase (HGD). An enzyme HGD involved in the catabolism of amino acids such as tyrosine and phenylalanine. The objective of this study was to analyse non-synonymous SNPs from highly deleterious missense mutations which affect the protein function of HGD gene. Based on 3D structure different computational algorithms were performed to identify deleterious SNPs and assess the influence of mutation by using molecular dynamics simulations and molecular docking. Bioinformatics analysis like SIFT, PolyPhen 2.0, I mutant 3.0, PANTHER, SNPs and GO were performed to predict non deleterious ns-SNPs from missense mutations. Energy minimization was done by using GROMACS followed by RMSD calculations and free-energy values under SWISS-PDB viewer and PyMoL respectively. Later, Trajectory analysis was performed using computational tools like SRIDE, CONSURF, SPPIDER, PSIPRED, FLEXPRED for predicting the probably damaged ns-SNPs. Moreover, molecular docking was performed and identified highly deleterious probably damaging mutation. By operating 10 bioinformatics analysis, we obtained 5 mutations R53W, L61P, G121R, G361R and L430H which have an adverse effect on HGD gene. The results of the ConSurf analysis showed that all of these ns-SNPs are in the highly conserved positions and influence the structure of native proteins. L61P mutation had more effect on protein structure. Later, for future studies these mutations assists to develop an effective drug for the associated disease Alkaptonuria.

Cite this article:
V. Nagalakshmi, J. Lavanya, B. Bhavya, V. Riya, B. Venugopal, A. Sai Ramesh. In-silico Profiling of Deleterious Non Synonymous SNPs of Homogentisate 1, 2 Dioxygenase (HGD) Gene for Early Diagnosis of “Alkaptonuria”. Research Journal of Pharmacy and Technology. 2022; 15(9):3898-4. doi: 10.52711/0974-360X.2022.00653

V. Nagalakshmi, J. Lavanya, B. Bhavya, V. Riya, B. Venugopal, A. Sai Ramesh. In-silico Profiling of Deleterious Non Synonymous SNPs of Homogentisate 1, 2 Dioxygenase (HGD) Gene for Early Diagnosis of “Alkaptonuria”. Research Journal of Pharmacy and Technology. 2022; 15(9):3898-4. doi: 10.52711/0974-360X.2022.00653   Available on:

1.    Garrod AE, Lancet. The incidence of alkaptonuria: A study in chemical individuality. MOL MED. 1996;2(3):274-282.
2.    Lodh, Kerketta JA. Early diagnosis of co-existent ß-thalassemia and alkaptonuria. Indian J Hum Genet. 2013;19(2):259-261.
3.    Andrea Zatkova, et al. Identification of 11 novel homogentisate 1, 2 dioxygenase variants in alkaptonuria patients and establishment of a novel LOVD-based HGD mutation database. JIMD Rep. 2012;4:55-65.
4.    Bhawan Bhende. AlkaPtonuria Disorder. International Journal of Nursing Education and Research. 2021; 9(3):364-6. Doi: 10.52711/2454-2660.2021.00084.
5.    Virginia Byers Kraus. Homogentisic acid. Rheumatology (Sixth Edition) Science Direct. 2015.
6.    Gallagher JA, Zatkova A. Alkaptonuria, Reference Module in Life Sciences. Science direct. Rheumatology (Sixth Edition). 2017.
7.    ChanikaPhornphutkul, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347:2111–2121.[PubMed: 12501223]
8.    Neuberger A. Studies on Alkaptonuria: The estimation of homogentisic acid. Biochem J. 1947;41:431–438.[PubMed: 16748188]
9.    Titus GP, et al. Crystal structure of human homogentisate dioxygenase. Nature Structural Biology. 2000; 7(7): pp. 542–546, doi:10.1038/76756. PMID 10876237.
10.    Tomasz Borowski, Valentin Georgiev, Per Siegbahn EM. Catalytic Reaction Mechanism of Homogentisate Dioxygenase: A Hybrid DFT Study. Journal of American Chemical Society. 2005;127(49):17303–17314.
11.    Sen Gupta ParthSarthi, Banerjee Shyamashree, Bandyopadhyay Amal Kumar. Sequence, structural, and functional characterization of Homogentisate 1,2 dioxygenase of homo sapiens : An in-silico analysis American Journal of Bioinformatics Research. 2013;3(3):42-61DOI:10.5923/j.bioinformatics.20130303.02
12.    Fernández-Cañón JM. The molecular basis of alkaptonuria. Nature Genetics. 1996;14(1):pp.19–24.
13.    Thierry Vilboux, et al. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Human Mutation. 2009;30(12):pp.1611–1619.
14.    Karl Roth S, Maria Descartes. Alkaptonuria (Black Urine Disease) Medscape. 2017.
15.    MashiurRahaman Md, et al. Implementation of computational approaches to explore the deleterious effectsof non-synonymous SNPs on pRB protein. JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS. 2021;DOI:10.1080/07391102.2021.1896385.
16.    Magesh R, George Priya Doss C. “Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria”. The Scientific World Journal. 2012; Article ID 738423:9 pages.
17.    Sai Ramesh, Rao Sethumadhavan, Padma Thiagarajan. Structure–Function Studies on Non-synonymous SNPs of Chemokine Receptor Gene Implicated in Cardiovascular Disease: A Computational Approach. Protein J. 2013;32:657–665.DOI 10.1007/s10930-013-9529-7.
18.    Ramensky V, Bork P, Sunyaev S. Human non‐synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30:3894–3900.
19.    SoukainaEssadssi, et al. "Computational Analysis of nsSNPs of ADA Gene in Severe Combined Immunodeficiency Using Molecular Modeling and Dynamics Simulation", Journal of Immunology Research, Article ID 5902391. 2019;14 pages:
20.    Chaimaa Ait Cadi EL, et al. “Prediction of the Impact of Deleterious Nonsynonymous Single Nucleotide Polymorphisms on the Human RRM2B Gene: A Molecular Modeling Study”. BioMed Research International. Article ID 7614634. 2020;10 pages:
21.    Lamiae Elkhattabi, et al. “In Silico Analysis of Coding/Noncoding SNPs of Human RETN Gene and Characterization of Their Impact on Resistin Stability and Structure”. Journal of Diabetes Research. Article ID 4951627. 2019;9pages:
22.    Hind Bouafi, et al. "Prediction and Structural Comparison of Deleterious Coding Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) in Human LEP Gene Associated with Obesity". BioMed ResearchInternational. ArticleID 1832084. 2019;10 pages:
23.    Abu Saleh Md, et al. “Impacts of Nonsynonymous Single Nucleotide Polymorphisms of Adiponectin Receptor 1 Gene on Corresponding Protein Stability: A Computational Approach”. BioMed Research International. Article ID 9142190. 2016;12 pages:
24.    Mujahed Mustafa I, et al. “Novel Deleterious nsSNPs within MEFV Gene that Could Be Used as Diagnostic Markers to Predict Hereditary Familial Mediterranean Fever: Using Bioinformatics Analysis”. Advances in Bioinformatics. Article ID 1651587. 2019;13 pages:
25.    Sravani M, Duganath N, Deepak Reddy Gade, Sandeep Reddy CH, Insilico Analysis and Docking of Imatinib Derivatives Targeting BCR-ABL Oncoprotein for Chronic Myeloid Leukemia. Asian J. Research Chem. January 2012;5(1): Page 153-158.
26.    Csaba Magyar, et al. SRide: a server for identifying stabilizing residues in proteins.Nucleic Acids Research. 2005;Volume 33,Issue suppl_2,1 Pages W303–W305:
27.    Zoya Khalid, Omar Almaghrabi. “Effects of Single-Nucleotide Polymorphisms in Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2): A Comprehensive Study”. Computational and Mathematical Methods in Medicine. Article ID 7419512.2020;9 pages:
28.    Venkata Subbiah H, Ramesh Babu P, Subbiah U. In silico analysis of non-synonymous single nucleotide polymorphisms of human DEFB1 gene. Egypt J Med Hum Genet21. 2020; 66:
29.    Liam Mc Guffin J, Kevin Bryson, David Jones T. The PSIPRED protein structure prediction server. Bioinformatics. 2000 April;16(4):Pages404–405.
30.    Peterson L, Jamroz M, Kolinski A, Kihara D. Predicting Real-Valued Protein Residue Fluctuation Using FlexPred. In: Zhou Y, Kloczkowski A, Faraggi E, Yang Y. (eds) Prediction of Protein Secondary Structure. Methods in Molecular Biology. 2017; vol 1484. Humana Press/ New York/ NY.
31.    Igor B Kuznetsov, Michael McDuffie. FlexPred: a web-server for predicting residue positions involved in conformational switches in proteins.Bioinformation. 2008;3(3): 134–136.2008 Nov 5. Doi: 10.6026/97320630003134.
32.    Uday Satpute M, Sachin Rohane H. Efficiency of AUTODOCK Insilico study of Pharmaceutical Drug Molecules. Asian J. Research Chem. 2021;14(1):92-96. Doi: 10.5958/0974-4150.2021.00016.
33.    Umesh HR, Ramesh KV, Devaraju KS. Molecular docking studies of phytochemicals against trehalose–6–phosphate phosphatases of pathogenic microbes. Beni-SuefUniv J Basic Appl Sci 9, 5. 2020;
34.    Morris GM, Lim-Wilby M. Molecular Docking. In: Kukol A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™. 2008;vol 443. Humana Press.
35.    Hemalatha K, Girija K. Evaluation of Drug Candidature of some Benzimidazole Derivatives as Biotin Carboxylase Inhibitors: Molecular docking and Insilico studies. Asian J. Res. Pharm. Sci. Jan-Mar2016;6(1):Page 15-20. doi: 10.5958/2231-5659.2016.00002.3
36.    Radhika Chelamalla, Ajitha Makula. Molecular docking studies and ADMET Predictions of Pyrimidine Coumarin Scaffolds as Potential IDO Inhibitors. Asian J. Research Chem. 2017; 10(3):331-340. Doi: 10.5958/0974-4150.2017.00056.6
37.    Mohammed Nasser Al-Kindi, Mazin Jawad Al-Khabouri, Khalsa Ahmad Al-Lamki, Flavia Palombo. In-silico analysis of a novel causative mutation in the Cadherin23 gene identified in an Omani family with hearing loss. Genetic Engineering and Biotechnology Journal. 2020;18(8).
38.    JuwairiahRemali, Wan MohdAizat, Chyan Leong Ng, Yi Chieh Lim. In-silico analysis on the functional and structural impact of Rad50 mutations involved in DNA strand break repair. PeerJ. 2020;8 (8):e9197.
39.    Anbarasu K, Jagadeeswari P, Radha Mahendran. In-silico Screening of Deleterious NF1 SNPs Associated with Neurofibromatosis Type I. Research J. Pharm. And Tech. 2017;10(9):3247-3250. Doi: 10.5958/0974-360X.2017.00576.5
40.    ElahehEmadi, Fatemeh Akhoundi, Seyed Mehdi Kalantar, ModjtabaEmadi-Baygi. Predicting the most deleterious missense ns-SNPs of the protein isoforms of the human HLA-G gene and in-silico evaluation of their structural and functional consequences. BMC Genetics. 2020;21(1).
41.    Permendra Kumar, Kulandaivelu Mahalingam. In-silico approach to identify non-synonymous SNPs with highest predicted deleterious effect on protein function in human obesity related gene, neuronal growth regulator 1 (NEGR1). Biology, Medicine 3 Biotech. 2018.
42.    Apoorva Singh, Siddhant Singh, Anand Anbarasu. In silico Evaluation of Non-Synonymous SNPs in IRS-1 Gene associated with type II Diabetes Mellitus. Research J. Pharm. And Tech 2018;11(5):1957-1961. Doi: 10.5958/0974-360X.2018.00363.3
43.    George Priya Doss C, et al. Extrapolating the effect of deleterious ns-SNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach. Human Genomics. 2013;7(1):10.
44.    Sowmya H. A Comparative Study of Homology Modeling Algorithms for NPTX2 Structure Prediction. Research J. Pharm. And Tech. 2019;12(4):1895-1900. Doi: 10.5958/0974-360X.2019.00312.3.
45.    AbdulAzeez S, Borgio JF. In-Silico Computing of the Most Deleterious ns-SNPs In HBA1 Gene. PLoS One. 2016;11(1):e0147702.
46.    R. Kannadasan, I. Arnold Emerson, MS. Saleem Basha. Docking of HIV-1 with Neem using Autodock in Bioinformatics. Research J. Pharm. And Tech. 2017;10(11):3877-3880. Doi: 10.5958/0974-360X.2017.00704.1.
47.    Sriroopreddy R, Raghuraman.P, Reena Rajkumari B. Modeling and Docking Study of GABA-AT Protein in Mycobacterium Tuberculosis – A Computational Approach. Research J. Pharm. And Tech 2018;11(4):1283-1288. Doi: 10.5958/0974-360X.2018.00238.X
48.    Arifuzzaman Md, et al. In-silico analysis of non synonymous single‐nucleotide polymorphisms (ns-SNPs) of the SMPX gene. Annual of Human Genetics. 2019.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available