Author(s): Dora Dayu Rahma Turista, Qurrotu A’yunin Lathifah, Arif Nur Muhammad Ansori, Yulanda Antonius, Gabrielle Ann Villar Posa, Wahyu Choirur Rizky, Tim Godefridus Antonius Dings, Galiya Kazhibayeva, Karina Omarova, Irina Anikina

Email(s): doraturistaofficial@gmail.com

DOI: 10.52711/0974-360X.2022.00650   

Address: Dora Dayu Rahma Turista1*, Qurrotu A’yunin Lathifah2, Arif Nur Muhammad Ansori3, Yulanda Antonius4, Gabrielle Ann Villar Posa5, Wahyu Choirur Rizky6, Tim Godefridus Antonius Dings7, Galiya Kazhibayeva8, Karina Omarova8, Irina Anikina8
1Biology Education Department, Faculty of Teacher Training and Education, Mulawarman University, Samarinda, Indonesia.
2Department of Medical Laboratory Technology, STIKES Hutama Abdi Husada, Tulungagung, Indonesia.
3Professor Nidom Foundation, Surabaya, Indonesia.
4Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia.
5School of Environmental Science and Management, University of the Philippines Los Baños, Los Baños, Philippines.
6College of Medicine, Sulaiman Al Rajhi University, Al Bukayriyah, Qassim, Saudi Arabia.
7College of Medicine, Maastricht University, Maastricht, The Netherlands.
8Department of Biotechnology, Toraighyrov University, Pavlodar, Kazakhstan.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022


ABSTRACT:
Diabetes mellitus is a metabolic disease characterized by hyperglycemia. Application of alloxan in experimental animals can cause Diabetes mellitus. The secondary metabolites of Etlingera elatior can be used as raw materials for diabetes mellitus drug. This study aims to determine the antidiabetic potential of ethanol extract of Etlingera elatior leaves by in vivo study. A total of 32 rats were divided into 6 groups, namely NC, DC, PC, DE1, DE2, and DE3. The results of data analysis using multivariate ANOVA on blood glucose level data every week showed p(0.000) < (0.05), and the results of data analysis using one way ANOVA on pancreatic ß cell count data also showed that p(0.000) < (0.05). Etlingera elatior leaf ethanol extract has antidiabetic activity since it could reduce blood glucose levels and increase the number of pancreatic ß beta cells through several mechanisms. The mechanism is triggered by phytochemical compounds contained in the leaf extract of Etlingera elatior.


Cite this article:
Dora Dayu Rahma Turista, Qurrotu A’yunin Lathifah, Arif Nur Muhammad Ansori, Yulanda Antonius, Gabrielle Ann Villar Posa, Wahyu Choirur Rizky, Tim Godefridus Antonius Dings, Galiya Kazhibayeva, Karina Omarova, Irina Anikina. In vivo Antidiabetic properties of Etlingera elatior Leaf Extract in Alloxan-Induced Diabetic Rats. Research Journal of Pharmacy and Technology. 2022; 15(9):3879-6. doi: 10.52711/0974-360X.2022.00650

Cite(Electronic):
Dora Dayu Rahma Turista, Qurrotu A’yunin Lathifah, Arif Nur Muhammad Ansori, Yulanda Antonius, Gabrielle Ann Villar Posa, Wahyu Choirur Rizky, Tim Godefridus Antonius Dings, Galiya Kazhibayeva, Karina Omarova, Irina Anikina. In vivo Antidiabetic properties of Etlingera elatior Leaf Extract in Alloxan-Induced Diabetic Rats. Research Journal of Pharmacy and Technology. 2022; 15(9):3879-6. doi: 10.52711/0974-360X.2022.00650   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-9-10


REFERENCES:
1.    Shah NA, Khan MR. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats. Biomed Res Int. 2014; 2014:67129. doi:10.1155/2014/671294
2.    Al Mansour MA. The prevalence and risk factors of type 2 diabetes mellitus (DMT2) in a semi-urban Saudi population. Int J Environ Res Public Health. 2020; 17(1):1-8. doi:10.3390/ijerph17010007
3.    Matheus ASDM, Tannus LRM, Cobas RA, Palma CCS, Negrato CA, Gomes MDB. Impact of diabetes on cardiovascular disease: An update. Int J Hypertens. 2013; 2013:653789. doi:10.1155/2013/653789
4.    Schmidt AM. Diabetes Mellitus and Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2019; 39(4):558-568. doi:10.1161/ATVBAHA.119.310961
5.    WHO. Diabetes. World Health Organization. Published 2021. Accessed March 21, 2021. https://www.who.int/health-topics/diabetes#tab=tab_1
6.    Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008; 51(2):216-226. doi:10.1007/s00125-007-0886-7
7.    Nosiri CI, Atasie OC, Alvan LC, Ifedigbo O. Histopathology of the Pancreatic Cells of Alloxan Induced Wistar Rats Treated with Psidium Guajava Ethanolic Leaf Extract. IOSR J Biotechnol Biochem. 2016; 2(4):28-32.
8.    Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Med. 2017; 53(6):365-374. doi:10.1016/j.medici.2018.02.001
9.    Yin P, Wang Y, Yang L, Sui J, Liu Y. Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules. 2018; 23(5):1-14. doi:10.3390/molecules23051046
10.    Lucchesi AN, Cassettari LL, Spadella CT. Alloxan-induced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. J Diabetes Res. 2015; 2015:494578. doi:10.1155/2015/494578
11.    A. Hussein R, A. El-Anssary A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In: Herbal Medicine. IntechOpen; 2019:11-29. doi:10.5772/intechopen.76139
12.    Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother. 2019; 111(October 2018):947-957. doi:10.1016/j.biopha.2018.12.127
13.    Gberikon GM, Adeoti I., Aondoaclaa. AD. Effect of ethanol and aqueous solutions as extraction solvents on phytochemical screening and antibacterial activity of fruit and stem bark extracts of Tetrapleura tetrapteraon, Streptococcus salivarus, and Streptococcus mutans. IntJCurrMicrobiolAppSci. 2015; 4(5):404-410.
14.    Harborne JB. Metode Fitokimia: Penuntun Cara Modern Menganalisis Tumbuhan. Second. Indonesia University; 1987.
15.    Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: Route of administration, pitfalls, and insulin treatment. Comp Med. 2004; 54(3):252-257.
16.    Fu Z, R. Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2012; 9(1):25-53. doi:10.2174/15733998130104
17.    Muthuraman P, Senthilkumar R, Srikumar K. Alterations in beta-islets of Langerhans in alloxan-induced diabetic rats by marine Spirulina platensis. J Enzyme Inhib Med Chem. 2009; 24(6):1253-1256. doi:10.3109/14756360902827240
18.    Patterson JW, Lazarow A, Levey S. Reactions of alloxan and dialuric acid with the sulfhydryl group. J Biol Chem. 1949; 177(1):197-204. doi:10.1016/S0021-9258(18)57075-7
19.    Munday R. Dialuric acid autoxidation. Biochem Pharmacol. 1988; 37(3):409-413. doi:10.1016/0006-2952(88)90207-9
20.    He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017; 44(2):532-553. doi:10.1159/000485089
21.    Zhao Y, Scott NA, Fynch S, et al. Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia. 2015; 58(1):140-148.
22.    Jörns A, Arndt T, Zu Vilsendorf AM, et al. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW.1AR1-iddm rat and humans with type 1 diabetes. Diabetologia. 2014;57(3):512-521. doi:10.1007/s00125-013-3125-4
23.    Wilcox NS, Rui J, Hebrok M, Herold KC. Life and death of β cells in Type 1 diabetes: A comprehensive review. J Autoimmun. 2016; 71:51-58. doi:10.1016/j.jaut.2016.02.001
24.    Schieber M, Chandel NS. ROS function in redox signaling. Curr Biol. 2014;24(10):453-462. doi:10.1016/j.cub.2014.03.034.ROS
25.    Kikumoto Y, Sugiyama H, Inoue T, et al. Sensitization to alloxan-induced diabetes and pancreatic cell apoptosis in acatalasemic mice. Biochim Biophys Acta - Mol Basis Dis. 2010;1802(2):240-246. doi:10.1016/j.bbadis.2009.10.009
26.    Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7(27):153-163. doi:10.1016/s0928-4680(00)00053-5
27.    Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157-1180. doi:10.1007/s00204-013-1034-4
28.    Marroqui L, Dos Santos RS, Fløyel T, et al. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes. 2015;64(11):3808-3817. doi:10.2337/db15-0362
29.    Yamamoto M, Taniguchi S, Aoyagi K. Domain structure as affected by the uniaxial ferromagnetic anisotropy induced in cubic solid solutions. Phys Rev. 1956;102(5):1295-1297. doi:10.1103/PhysRev.102.1295
30.    Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802-1812. doi:10.1172/JCI29103
31.    Gonçalves RV, Costa AMA, Grzeskowiak L. Oxidative stress and tissue repair: mechanism, biomarkers, and therapeutics. Oxid Med Cell Longev. 2021; 2021:12-14. doi:10.1155/2021/6204096
32.    Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016 Dec 29;5: e47):1-15. doi:10.1017/jns.2016.41
33.    Sailaja Rao P, Kalva S, Yerramilli A, Mamidi S. Free radicals and tissue damage: role of antioxidants. Free Radicals Antioxidants. 2011;1(4):1-6. doi:10.5530/ax.2011.4.2
34.    Beecher GR. Introduction to the Proceedings of the Third International Scientific Symposium on Tea and Human Health: Role of flavonoids in the diet. J Nutr. 2003;133(10):3248-3254. doi:10.1093/jn/133.10.3248S
35.    Gothai S, Ganesan P, Park S-Y, Fakurazi S, Choi D-K, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients. 2016;8(8):461. doi:10.3390/nu8080461
36.    Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):1-35. doi:10.3390/biom9090430
37.    Lee MS, Chyau CC, Wang CP, Wang TH, Chen JH, Lin HH. Flavonoids identification and pancreatic beta-cell protective effect of lotus seedpod. Antioxidants. 2020;9(8):1-23. doi:10.3390/antiox9080658
38.    Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. Phytomedicine. 2019; 56:229-245. doi:10.1016/j.phymed.2018.10.026
39.    Ali Asgar M. Anti-diabetic potential of phenolic compounds: A review. Int J Food Prop. 2013;16(1):91-103. doi:10.1080/10942912.2011.595864
40.    Tong WY, Wang H, Waisundara VY, Huang D. Inhibiting enzymatic starch digestion by hydrolyzable tannins isolated from Eugenia jambolana. LWT - Food Sci Technol. 2014;59(1):389-395.
41.    Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. α-glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem. 2001;49(4):1948-1951. doi:10.1021/jf001251u
42.    Amiraragab B, Hussein SA, Alm-Eldeen A-E, Hafe z A, Mohamed T. Diabetes management saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017;7(1):148-158.
43.    Elekofehinti OO. Saponins: Anti-diabetic principles from medicinal plants - A review. Pathophysiology. 2015;22(2):95-103. doi:10.1016/j.pathophys.2015.02.001
44.    Ashour AS, El Aziz MMA, Gomha Melad AS. A review on saponins from medicinal plants: chemistry, isolation, and determination. J Nanomedicine Res. 2019;7(4):282-288. doi:10.15406/jnmr.2019.07.00199
45.    Sharma B, Mittal A, Dabur R. Mechanistic approach of anti-diabetic compounds identified from natural sources. Chem Biol Lett. 2018;5(2):63-99.
46.    Nafiu M, Tom Ashafa A. Antioxidant and inhibitory effects of saponin extracts from Dianthus basuticus Burtt Davy on key enzymes implicated in type 2 diabetes In vitro. Pharmacogn Mag. 2017;13(52):576-582. doi:10.4103/pm.pm_583_16
47.    Kumar A, Aswal S, Semwal RB, Chauhan A, Joshi SK, Semwal DK. Role of plant-derived alkaloids against diabetes and diabetes-related complications: a mechanism-based approach. Phytochem Rev. 2019;18(5):1277-1298. doi:10.1007/s11101-019-09648-6
48.    Larantukan SVM, Setiasih LNE, Widyastuti SK, et al. Pemberian Ekstrak Etanol Kulit Batang Kelor Glukosa Darah Tikus Hiperglikemia. Indones Med Veterinus. 2014;3(4):292-299.
49.    Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An Updated Review. Oxid Med Cell Longev. 2020; 2020:1-36. doi:10.1155/2020/1356893
50.    Putta S, Sastry Yarla N, Kumar Kilari E, et al. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr Top Med Chem. 2016;16(23):2532-2542. doi:10.2174/1568026616666160414123343
51.    Lyu H, Chen J, Li WL. Natural triterpenoids for the treatment of diabetes mellitus: A review. Nat Prod Commun. 2016;11(10):1579-1586. doi:10.1177/1934578x1601101037
52.    Nazaruk J, Borzym-Kluczyk M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev. 2015;14(4):675-690. doi:10.1007/s11101-014-9369-x
53.    Iskender H, Yenice G, Dokumacioglu E, Kaynar O, Hayirli A, Kaya A. The effects of dietary flavonoid supplementation on the antioxidant status of laying hens. Rev Bras Cienc Avic. 2016;18(4):663-668. doi:10.1590/1806-9061-2016-0356
54.    Ciampi F, Sordillo LM, Gandy JC, et al. Evaluation of natural plant extracts as antioxidants in a bovine in vitro model of oxidative stress. J Dairy Sci. 2020;103(10):8938-8947. doi:10.3168/jds.2020-18182
55.    Agati G, Brunetti C, Fini A, et al. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 2020;9(11):1-17. doi:10.3390/antiox9111098
56.    Henneberg R, Otuki MF, Furman AEF, Hermann P, Nascimento AJ do, Leonart MSS. Protective effect of favonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea. Rev Bras Hematol Hemoter. 2013;35(1):52-55. doi:10.5581/1516-8484.20130015
57.    Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. Flavonoids as Antioxidants and Developmental Regulators: Relative Significance in Plants and Humans. Int J Mol Sci. 2013;14(2):3540-3555. doi:10.3390/ijms14023540
58.    Banjarnahor SDS, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014;23(4):239-244. doi:10.13181/mji.v23i4.1015
59.    Xu D, Hu M-J, Wang Y-Q, Cui Y-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24(6):1123. doi:10.3390/molecules24061123
60.    Amarowicz R. Tannins: the new natural antioxidants? Eur J Lipid Sci Technol. 2007;109(6):549-551. doi:10.1002/ejlt.200700145
61.    Sieniawska E. Activities of tannins-From in Vitro studies to clinical trials. Nat Prod Commun. 2015;10(11):1877-1884. doi:10.1177/1934578x1501001118
62.    Velayutham R, Sankaradoss N, Ahamed KN. Protective effect of tannins from Ficus racemosa in hypercholesterolemia and diabetes induced vascular tissue damage in rats. Asian Pac J Trop Med. 2012;5(5):367-373. doi:10.1016/S1995-7645(12)60061-3
63.    Ashraf MF, Abd Aziz M, Stanslas J, Ismail I, Abdul Kadir M. Assessment of antioxidant and cytotoxicity activities of saponin and crude extracts of Chlorophytum borivilianum. Sci World J. 2013; 2013:1-7. doi:10.1155/2013/216894
64.    Gülçin I, Mshvildadze V, Gepdiremen A, Elias R. Antioxidant activity of saponins isolated from ivy: α-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Med. 2004;70(6):561-563. doi:10.1055/s-2004-827158
65.    Lim JG, Park HM, Yoon KS. Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Sci Nutr. 2020;8(1):694-702. doi:10.1002/fsn3.1358
66.    Chen Y, Miao Y, Huang L, et al. Antioxidant activities of saponins extracted from Radix Trichosanthis: An in vivo and in vitro evaluation. BMC Complement Altern Med. 2014;14(1):1-8. doi:10.1186/1472-6882-14-86
67.    Muthuraman A, Krishan S, Perumal Ps, Anaswara P. Therapeutic potency of saponin rich aqueous extract of Scoparia dulcis L. in alloxan induced diabetes in rats. AYU (An Int Q J Res Ayurveda). 2014 Apr;35(2):211-7. doi:10.4103/0974-8520.146261
68.    Li YN, Guo Y, Xi MM, et al. Saponins from aralia taibaiensis attenuate D-galactose-induced aging in rats by activating FOXO3a and Nrf2 pathways. Oxid Med Cell Longev. 2014; 2014:320513. doi:10.1155/2014/320513
69.    El Guiche R, Tahrouch S, Amri O, El Mehrach K, Hatimie A. Antioxidant activity and total phenolic and flavonoid contents of 30 medicinal and aromatic plants located in the south of Morocco. Int J New Technol Res. 2015;1(3):7-11.
70.    Spiridon I, Bodirlau R, Teaca CA. Total phenolic content and antioxidant activity of plants used in traditional Romanian herbal medicine. Cent Eur J Biol. 2011;6(3):388-396. doi:10.2478/s11535-011-0028-6
71.    Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules. 2009;14(6):2202-2211. doi:10.3390/molecules14062202
72.    Baharuddin NAF, Nordin MFM, Morad NA, Aris NIA, Yunus MAC. Total phenolic, flavonoid content and antioxidant activity of Clinacanthus nutans leaves by water-based ultrasonic assisted extraction. Malaysian J Anal Sci. 2018;22(4):659-666. doi:10.17576/mjas-2018-2204-12
73.    Augusto TR, Scheuermann Salinas ES, Alencar SM, D’Arce MABR, De Camargo AC, Vieira TMF de S. Phenolic compounds and antioxidant activity of hydroalcoholic extractsof wild and cultivated murtilla (Ugni molinae turcz.). Food Sci Technol. 2015;34(4):667-673. doi:10.1590/1678-457X.6393
74.    Pourreza N. Phenolic compounds as potential antioxidant. Jundishapur J Nat Pharm Prod. 2013;8(4):149-150. doi:10.17795/jjnpp-15380
75.    Abdul-hafeez EY, Karamova N, Ilinskaya O. Antioxidant activity and total phenolic compound content of certain medicinal plants. Int J Biosci. 2014;5(9):213-222. doi:10.12692/ijb/5.9.213-222
76.    Gülçin I, Elias R, Gepdiremen A, Chea A, Topal F. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. J Enzyme Inhib Med Chem. 2010;25(1):44-53. doi: 10.3109/14756360902932792
77.    Zahari A, Ablat A, Sivasothy Y, Mohamad J, Choudhary MI, Awang K. In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac J Trop Med. 2016;9(4):328-332. doi:10.1016/j.apjtm.2016.03.008
78.    Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):1-52. doi:10.3390/antiox9080681
79.    Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron physician. 2016;8(1):1832-1842. doi:10.19082/1832
80.    Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Darmanto W, Winarni D. The Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Malondialdehyde and Cholesterol Level in STZ Induced Diabetic Mice. Ecology, Environment and Conservation. 2019; 25: 51-55.
81.    Tiong SH, Looi CY, Hazni H, et al. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18(8):9770-9784. doi:10.3390/molecules18089770
82.    Kasote DM, Katyare SS, Hegde M V., Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982-991. doi:10.7150/ijbs.12096
83.    Gülçin I, Mshvildadze V, Gepdiremen A, Elias R. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-glucopyranosyl)-hederagenin. Phyther Res. 2006;20(2):130-134. doi:10.1002/ptr.1821
84.    Xi M, Hai C, Tang H, et al. Antioxidant and antiglycation properties of triterpenoid saponins from Aralia taibaiensis traditionally used for treating diabetes mellitus. Redox Rep. 2010;15(1):20-28. doi:10.1179/174329210X12650506623041
85.    Husen SA, Winarni D, Khaleyla F, Kalqutny SH, Ansori ANM. Activity Assay of Mangosteen (Garcinia mangostana L.) Pericarp Extract for Decreasing Fasting Blood Cholesterol Level and Lipid Peroxidation in Type-2 Diabetic Mice. AIP Conference Proceedings. 2017; 1888(1).
86.    Ansori ANM, Susilo RJK, Hayaza S, Winarni D and Husen SA. Renoprotection by Garcinia mangostana L. pericarp extract in streptozotocin-induced diabetic mice. Iraqi Journal of Veterinary Sciences. 2019; 33(1): 13-19.
87.    Zhu L, Yi X, Ma C, et al. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins (Basel). 2020;12(9):540. doi:10.3390/toxins12090540
88.    Ahmad R, Khan A, Lee HJ, et al. Lupeol, a plant-derived triterpenoid, protects mice brains against Aβ-induced oxidative stress and neurodegeneration. Biomedicines. 2020;8(10):380. doi:10.3390/biomedicines8100380
89.    Teng H, Yuan B, Gothai S, Arulselvan P, Song X, Chen L. Dietary triterpenes in the treatment of type 2 diabetes: To date. Trends Food Sci Technol. 2018;72(June 2017):34-44. doi:10.1016/j.tifs.2017.11.012
90.    Adewole SO, Caxton-Martins EA, Ojewole JAO. Protective effect of quercetin on the morphology of pancreatic β-cells of stretozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med. 2007;4(1):64-74. doi:10.4314/ajtcam.v4i1.31196
91.    Fetouh FA, Azab AES. Ameliorating effects of Curcumin and Propolis against the reproductive toxicity of gentamicin in adult male guinea pigs: quantitative analysis and morphological study. Am J Life Sci. 2014;2(3):138-149. doi:10.11648/j.ajls.20140203.13
92.    Adwas AA, Ibrahim ASE, Azab AE, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1):43-47. doi:10.15406/jabb.2019.06.00173
93.    Jiménez-Osorio AS, González-Reyes S, Pedraza-Chaverri J. Natural Nrf2 Activators in Diabetes. Clinica Chimica Acta. 2015 Aug 25; 448:182-92. doi:10.1016/j.cca.2015.07.009
94.    Wang YJ, Wang XY, Hao XY, et al. Ethanol extract of centipeda minima exerts antioxidant and neuroprotective effects via activation of the Nrf2 signaling pathway. Oxid Med Cell Longev. 2019; 2019:1-16. doi:10.1155/2019/9421037
95.    Husen SA, Khaleyla F, Kalqutny SH, Ansori ANM, Susilo RJK, Alymahdy AD and Winarni D. Antioxidant and antidiabetic activity of Garcinia mangostana L. pericarp extract in streptozotocin-induced diabetic mice. Bioscience Research. 2017; 14(4): 1238-1245.
96.    Jayawardena TU, Sanjeewa KKA, Fernando IPS, et al. Sargassum horneri (Turner) C. Agardh ethanol extract inhibits the fine dust inflammation response via activating Nrf2/HO-1 signaling in RAW 264.7 cells. BMC Complement Altern Med. 2018;18(1):1-11. doi:10.1186/s12906-018-2314-6
97.    He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):1-23. doi:10.3390/ijms21134777
98.    Reis AA da S, Santos R da S, Cruz AH da S, Silva EG da, Cruz AD da, Pedrino GR. The Effect of Nrf2 on Diabetic Complications. In: A Master Regulator of Oxidative Stress - The Transcription Factor Nrf2.; 2016:131-144. doi:10.5772/66132
99.    Husen SA, Winarni D, Khaleyla F, Kalqutny SH and Ansori ANM. Activity assay of mangosteen (Garcinia mangostana L.) pericarp extract for decreasing fasting blood cholesterol level and lipid peroxidation in type-2 diabetic mice. AIP Conference Proceedings. 2017; 1888(1): 020026-1-6.
100.    Cleaver O. β Cell Renewal versus Differentiation: Slow and Steady Wins the Race. Dev Cell. 2017;41(3):223-225. doi:10.1016/j.devcel.2017.04.017
101.    Husen SA, Winarni D, Salamun, Ansori ANM, Susilo RJK and Hayaza S. Hepatoprotective effect of gamma-mangostin for amelioration of impaired liver structure and function in streptozotocin-induced diabetic mice. IOP Conference Series: Earth and Environmental Science. 2019; 217: 012031.
102.    Bouwens L, Rooman I. Regulation of pancreatic beta-cell mass. Physiol Rev. 2005;85(4):1255-1270. doi:10.1152/physrev.00025.2004

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available