Author(s): Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Vikash Jakhmola, Wahyu Choirur Rizky, Muhammad Hermawan Widyananda, Rasyadan Taufiq Probojati, Ahmad Affan Ali Murtadlo, Maksim Rebezov, Pavel Scherbakov, Pavel Burkov, Yulia Matrosova, Alexander Romanov, Maic Audo Eybi Mayer Sihombing, Yulanda Antonius, Rahadian Zainul

Email(s): rahadianzmsiphd@fmipa.unp.ac.id

DOI: 10.52711/0974-360X.2022.00638   

Address: Viol Dhea Kharisma1,2, Arif Nur Muhammad Ansori3, Vikash Jakhmola4, Wahyu Choirur Rizky5, Muhammad Hermawan Widyananda1,2, Rasyadan Taufiq Probojati2,6, Ahmad Affan Ali Murtadlo2, Maksim Rebezov7,8, Pavel Scherbakov9, Pavel Burkov10, Yulia Matrosova11, Alexander Romanov10, Maic Audo Eybi Mayer Sihombing12, Yulanda Antonius13, Rahadian Zainul14*
1Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia.
2Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, Indonesia.
3Professor Nidom Foundation, Surabaya, Indonesia.
4Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
5College of Medicine, Sulaiman Al Rajhi University, Al-Qassim, Saudi Arabia.
6Faculty of Agriculture, Universitas Kadiri, Kediri, Indonesia.
7Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation.
8K.G. Razumovsky Moscow State University of Tech

Published In:   Volume - 15,      Issue - 8,     Year - 2022


ABSTRACT:
Human papillomavirus (HPV) is a small and non-enveloped deoxyribonucleic acid (DNA) virus that infected mucosal cells. This viral genome is composed of early and late genes. Late (L) encodes the L1 and L2 proteins. The structural protein L1 is located outside the virion. It contributes to the viral attachment mechanism; hence it becomes the target for multi-strain vaccine design. This review aims to discuss the potency of conserved L1 HPV region and the innovation of multi-strain vaccines for prevention strategies of HPV infection. Bioinformatics methods in vaccine design applied for identification of conserved sequences from databases, epitopes map, antigenicity test, prediction of similarity, and autoimmune level. The multi-strain vaccine innovation initiated in this review has more benefits compared to previous vaccines based on the level of vaccine coverage via conserved regions, potential of immune cell epitopes, antigenic properties, and possibility of autoimmune when produced. Therefore, the multi-strain HPV vaccines are predicted to be more effective than previous vaccines, including bivalent or quadrivalent. In conclusion, the strategy for expanding the prevention of HPV infection could be carried out by developing a new multi-strain-based vaccine by using conserved regions in L1 capsid from all virus strains to increase the protection.


Cite this article:
Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Vikash Jakhmola, Wahyu Choirur Rizky, Muhammad Hermawan Widyananda, Rasyadan Taufiq Probojati, Ahmad Affan Ali Murtadlo, Maksim Rebezov, Pavel Scherbakov, Pavel Burkov, Yulia Matrosova, Alexander Romanov, Maic Audo Eybi Mayer Sihombing, Yulanda Antonius, Rahadian Zainul. Multi-Strain Human Papillomavirus (HPV) Vaccine Innovation via Computational Study: A Mini Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3802-7. doi: 10.52711/0974-360X.2022.00638

Cite(Electronic):
Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Vikash Jakhmola, Wahyu Choirur Rizky, Muhammad Hermawan Widyananda, Rasyadan Taufiq Probojati, Ahmad Affan Ali Murtadlo, Maksim Rebezov, Pavel Scherbakov, Pavel Burkov, Yulia Matrosova, Alexander Romanov, Maic Audo Eybi Mayer Sihombing, Yulanda Antonius, Rahadian Zainul. Multi-Strain Human Papillomavirus (HPV) Vaccine Innovation via Computational Study: A Mini Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3802-7. doi: 10.52711/0974-360X.2022.00638   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-80


REFERENCES:
1.    IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Human Papillomaviruses. Lyon (FR): International Agency for Research on Cancer. 2007; 90.
2.    Chang Y, Brewer NT, Rinas AC, Schmitt K, Smith JS. Evaluating the impact of human papillomavirus vaccines. Vaccine. 2009; 27(32): 4355-4362. doi.org/10.1016/j.vaccine.2009.03.008
3.    Bao YP, Li N, Smith JS, Qiao YL, ACCPAB members. Human papillomavirus type distribution in women from Asia: a meta-analysis. International Journal of Gynecologic Cancer. 2008; 18: 71-79. doi.org/10.1111/j.1525-1438.2007.00959.x
4.    Choi YJ and Park JS. Clinical significance of human papillomavirus genotyping. Journal of Gynecologic Oncology. 2016; 27(2): e21. doi.org/ 10.3802/jgo.2016.27.e21
5.    Clifford GM, Gallus S, Herrero R, Muñoz N, Snijders PJF, Vaccarella S, Anh PTH, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005; 366(9490): 991-998. doi.org/10.1016/S0140-6736(05)67069-9
6.    Burd EM. Human papillomavirus and cervical cancer. Clinical Microbiology Reviews. 2003; 16(1): 1-17. doi.org/10.1016/S0140-6736(13)60022-7
7.    King AJ, Sonsma JA, Vriend HJ, van der Sande MAB, Feltkamp MC, Boot HJ, Koopmans MPG, et al. Genetic diversity in the major capsid L1 protein of HPV-16 and HPV-18 in the Netherlands. PLoS One. 2016; 11(4): e0152782. doi.org/10.1371/journal.pone.0152782
8.    Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007; 370(9590): 890-907. doi.org/10.1016/S0140-6736(13)60022-7
9.    Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. Journal of Virology. 2001; 75(3): 1565-1570. Doi.org/10.1128/JVI.75.3.1565-1570.2001
10.    Dasgupta J, Bienkowska-Haba M, Ortega ME, Patel HD, Bodevin S, Spillmann D, Bishop B, et al. Structural basis of oligosaccharide receptor recognition by human papillomavirus. Journal of Biological Chemistry. 2011; 286(4): 2617-2624. doi.org/10.1074/jbc.M110.160184
11.    Knappe M, Bodevin S, Selinka H-C, Spillmann D, Streeck RE, Chen XS, Lindahl U, et al. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. Journal of Biological Chemistry. 2007; 282(38): 27913-27922. doi.org/ 10.1074/jbc.M705127200
12.    Ashkenazi A, Faingold O, Kaushansky N, Ben-Nun A, Shai Y. A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice. Blood. 2013; 121(12): 2244-2252. doi.org/10.1182/blood-2012-11-468900
13.    Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, A Pennacchio L, Rubin EM. Deletion of ultraconserved elements yields viable mice. PLoS Biology. 2007; 5(9): e234. doi.org/10.1371/journal.pbio.0050234
14.    Hafidzhah MA, Wijaya RM, Probojati RT, Kharisma VD, Ansori ANM, Parikesit AA. Potential vaccine targets for COVID-19 and phylogenetic analysis based on the nucleocapsid phosphoprotein of Indonesian SARS-CoV-2 isolates. Indonesian Journal of Pharmacy. 2021; 32(3): 328-337. doi.org/10.22146/ijp.1497
15.    Adianingsih OR and Kharisma VD. Study of B cell epitope conserved region of the Zika virus envelope glycoprotein to develop multi-strain vaccine. Journal of Applied Pharmaceutical Science. 2019; 9(4): 98-103. doi.org/10.7324/JAPS.2019.90114
16.    Muttaqin SS and Ansori ANM. Candidate inhibitors of SARS-CoV-2 main protease with 3D structures similar to N3. Research Journal of Biotechnology. 2020; 15(11): 55-59.
17.    Praveena A and Sanjayan KP. A bioinformatics approach reveals the insecticidal property of Morinda tinctoria Roxb. against the cotton Bollworm Helicoverpa armigra. Research Journal of Pharmacy and Technology. 2016; 9(11): 1829-1834. doi.org/10.5958/0974-360X.2016.00372.3
18.    Purnama ER and Kharisma VD. Epitope mapping of capsid protein l1 from human papillomavirus to development cervical cancer vaccine through computational study. Journal of Physics. Conference Series. 2018; 1108. doi.org/10.1088/1742-6596/1108/1/012096
19.    Madhanraj P, Ramanathan K, Arun N, Nadimuthu N, Panneerselvam A. Atomic study on Fusarium incarnatum using bioinformatics tools. Asian Journal of Pharmaceutical Research. 2012; 2(2): 78-82.
20.    Baig AA, Yean CY, Tengku MA, Zubaidi AL, Nordin S, Zilfalil A. Computational characterization of the promoter region of SMN2 (survival of motor neuron) gene. Research Journal of Pharmacy and Technology. 2018; 11(7): 2729-2736. doi.org/10.5958/0974-360X.2018.00504.8
21.    Kharisma VD, Widodo N, Ansori ANM, Nugraha AP. A vaccine candidate of zika virus (ZIKV) from polyvalent conserved B-cell epitope on viral glycoprotein: In silico approach. Biochemical and Cellular Archives. 2020; 20: 2785-2793. doi.org/10.35124/bca.2020.20.S1.2785
22.    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 2018; 35(6): 1547-1549. doi.org/10.1093/molbev/msy096
23.    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research. 2003; 31(13): 3497-500. doi.org/10.1093/nar/gkg500
24.    Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology- modeling server. Nucleic Acids Research. 2003; 31(13): 3381-3385. doi.org/10.1093/nar/gkg520
25.    Kharisma VD and Ansori ANM. Construction of epitope-based peptide vaccine against SARS-CoV-2: Immunoinformatics study. Journal of Pure and Applied Microbiology. 2020; 14: 999-1005. doi.org/10.22207/JPAM.14.SPL1.38.
26.    Ordog R. PyDeT, a PyMOL plug-in for visualizing geometric concepts around proteins. Bioinformation. 2008; 2(8): 346-347. doi.org/ 10.6026/97320630002346
27.    Nakagawa M, Kim KH, Moscicki AB. Different methods of identifying new antigenic epitopes of human papillomavirus type 16 E6 and E7 proteins. Clinical and Diagnostic Laboratory Immunology. 2004; 11(5): 889-896. doi.org/10.1128/CDLI.11.5.889-896.2004
28.    Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Research. 2006; 2: 2. doi.org/ 10.1186/1745-7580-2-2
29.    Jespersen MC, Peters B, Nielsen M. BepiPred-2.0: improving sequence-based B- cell epitope prediction using conformational epitopes. Nucleic Acids Research. 2017; 45(W1): W24-W29. doi.org/10.1093/nar/gkx346
30.    Wickelgren, I. Policing the immune system. Science. 2004; 306(5696): 596-599. doi.org/ 10.1126/science.306.5696.596
31.    Kolaskar AS and Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters. 1990; 276(1-2):  172-174. doi.org/10.1016/0014-5793(90)80535-q
32.    Pereira WO, Correia RP, Hamerschlak N, Bacal NS, Campregher PV. Immunophenotypic evolution of blast populations in pediatric acute myeloid leukemia. Einstein. 2016; 14(2): 288-289. doi.org/10.1590/S1679-45082016AI3516
33.    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer. 2015; 136(5): E359-E386. doi.org/10.1002/ijc.29210
34.    Wang JW, Hung CF, Huh WK, Trimble CL, Roden RBS. Immunoprevention of human papillomavirus- associated malignancies. Cancer Prevention Research. 2015; 8(2): 95-104. doi.org/10.1158/1940-6207.CAPR-14-0311
35.    Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Reviews of Vaccines. 2016; 15(7): 853-862. doi.org/10.1586/14760584.2016.1157479
36.    Negahdaripour M, Nezafat N, Ghasemi Y. A panoramic review and in silico analysis of IL-11 structure and function. Cytokine and Growth Factor Reviews. 2016; 32: 41-61. doi.org/10.1016/j.cytogfr.2016.06.002
37.    Fausch SC, Da Silva DM, Kast WM. Heterologous papillomavirus virus-like particles and human papillomavirus virus-like particle immune complexes activate human Langerhans cells. Vaccine. 2005; 23(14):1720-1729. doi.org/10.1016/j.vaccine.2004.09.035
38.    Roldão A, Mellado MC, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Review of Vaccines. 2010; 9(10): 1149-1176. doi.org/10.1586/erv.10.115
39.    Yancey AM, Pitlick JM, Forinash AB. The prophylactic role for the human papillomavirus quadrivalent vaccine in males. Annals of Pharmacotherapy. 2010; 44(7-8): 1314-1318.  doi.org/10.1345/aph.1P017
40.    Lowy DR and Schiller JT. Prophylactic human papillomavirus vaccines. Journal of Clinical Investigation. 2006; 116(5): 1167-1173. doi.org/10.1172/JCI28607
41.    Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, Carletti I, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18-45 years. Human Vaccines. 2009; 5(10): 705-719. doi.org/10.4161/hv.5.10.9518
42.    Kash N, Lee MA, Kollipara R, Downing C, Guidry J, Tyring SK. Safety and efficacy data on vaccines and immunization to human papillomavirus. Journal of Clinical Medicine. 2015; 4(4): 614-633. doi.org/10.3390/jcm4040614
43.    Kannadasan R, Arnold Emerson I, Basha MSS. Docking of HIV-1 with Neem using Autodock in bioinformatics. Research Journal of Pharmacy and Technology. 2017; 10(11): 3877-3880. doi.org/10.5958/0974-360X.2017.00704.1
44.    More S, Raje V, Phalke N, Lokhande S. Bioinformatics – An emerging field. Asian Journal of Research in Pharmaceutical Sciences. 2018; 8(4): 185-191.
45.    Swetha RG and Anbarasu A. A review on infectious diseases and their importance in developing biological databases. Research Journal of Pharmacy and Technology. 2016; 9(5): 621-624. doi.org/10.5958/0974-360X.2016.00119.0
46.    Marimuthu N, Viswanathan T, Radha M, Suganya J. Computational screening of the phytocompounds from the plant Ballota nigra Linn against the human papillomavirus (HPV) E6. Research Journal of Pharmacy and Technology. 2017; 10(9): 3095-3097. doi.org/10.5958/0974-360X.2017.00549.2
47.    Kharisma VD, Ansori ANM, Nugraha AP. Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus type 16 (HPV-16) infection. Biochemical and Cellular Archives. 2020; 20: 3155-3159. doi.org/10.35124/bca.2020.20.S1.3155
48.    Kharisma VD, Probojati RT, Murtadlo AAA, Ansori ANM, Antonius Y, Tamam MB. Revealing potency of bioactive compounds as inhibitor of dengue virus (DENV) NS2b/NS3 protease from sweet potato (Ipomoea batatas l.) leaves. Indian Journal of Forensic Medicine and Toxicology. 2021; 15(1): 1627-1632. doi.org/10.37506/ijfmt.v15i1.13644
49.    Uzakova AB, Lyudmila A, Kayukova, Poroikov BB, Praliev KD. A comparison of the data of bioinformatics and experimental in vitro antitubercular activity of the new β-aminopropioamidoximes library. Research Journal of Pharmacy and Technology. 2018; 11(9): 4003-4009. doi.org/10.5958/0974-360X.2018.00736.9
50.    Kharisma VD, Ansori ANM, Widyananda MH, Utami SL, Nugraha AP. Molecular simulation: The potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochemical and Cellular Archives. 2020; 20: 2795-2802. doi.org/10.35124/bca.2020.20.S1.2795
51.    Fadholly A, Ansori ANM, Kharisma VD, Rahmahani J, Tacharina MR. Immunobioinformatics of rabies virus in various countries of Asia: Glycoprotein gene. Research Journal of Pharmacy and Technology. 2021; 14(2): 883-886. doi.org/10.5958/0974-360X.2021.00157.8
52.    Alameedy FMM. Diagnosis of human papillomavirus in colorectal cancer and inhibition by gamma radiation. Research Journal of Pharmacy and Technology. 2019; 12(5): 2182-2184. doi.org/10.5958/0974-360X.2019.00363.9
53.    Jin XW, Lipold L, Sikon A, Rome E. Human papillomavirus vaccine: safe, effective, underused. Cleveland Clinic Journal of Medicine. 2013; 80(1): 49-60. doi.org/10.3949/ccjm.80a.12084

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available