Author(s): Dipanjan Karati, Tapan Kumar Shaw

Email(s): tapan2009@gmail.com

DOI: 10.52711/0974-360X.2022.00636   

Address: Dipanjan Karati1, Tapan Kumar Shaw2*
1Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune - 411038, Maharashtra, India.
2Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata - 700109, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 8,     Year - 2022


ABSTRACT:
Disorders of the central nervous system are expected to have a profound impact on the global healthcare needs of the human community in this era. Alzheimer disease (AD) is senile decay of neurons. The hallmark of pathophysiology of AD disease has two pivotal features example- extracellular beta amyloid deposition and intracellular tau hyper phosphorylation. New medicine-based psychoactive treatments have met with modest effectiveness due to the multi-factorial nature of these diseases. As a result, there is an increasing need for new products that can address various receptors and enhance behavioural abilities on their own or in tandem with traditional medications. Herbal products focused on conventional expertise have been widely popular in both developed and developing countries in recent years. Ayurveda is a medical science that deals with the treatment of diseases using naturally occurring plant products. Ayurveda claims to have many neuroprotective herbs. In this review the pharmacological effectiveness and therapeutic properties of Bacopa monnieri (BM) against AD and diabetic peripheral neuropathy (DPN) have been discussed. DPN is also an utmost common neuronal disease. DPN affects more than half of diabetic patients who have had diabetes for more than 25 years. It is proved that a bacosides-rich fraction of BM has antinociceptive actions in rats, alleviating allodynia and hyperalgesia in a chronic constriction wound model of neuropathic discomfort. BM may be an important natural cure for the treatment of neuropathic pain syndromes.


Cite this article:
Dipanjan Karati, Tapan Kumar Shaw. Pharmacological importance of Bacopa monnieri on Neurological disease (Alzheimer’s Disease) and Diabetic neuropathy - A Concise Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3790-5. doi: 10.52711/0974-360X.2022.00636

Cite(Electronic):
Dipanjan Karati, Tapan Kumar Shaw. Pharmacological importance of Bacopa monnieri on Neurological disease (Alzheimer’s Disease) and Diabetic neuropathy - A Concise Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3790-5. doi: 10.52711/0974-360X.2022.00636   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-78


REFERENCES:
1.    Sharma S. Rathi N. Kamal B. Conservation of biodiversity of highly important medicinal plants of India through tissue culture technology- a review. Agriculture and Biology Journal of North America. 2010; 1(5):827-833. doi/10.5251/abjna.2010.1.5.827.833
2.    Murthy PBS. Raju VR. Ramakrishna T. Chakravarthy MS. Kumar KV. Kannababu S et al Estimation of twelve bacopa saponins in Bacopa monnieri extracts and formulations by high-performance liquid chromatography. Chemical and Pharmaceutical Bulletin. 2006; 54(6):907–911. doi/10.1248/cpb.54.907
3.    Deepak M. Sangli GK. Amit A. Quantitative determination of the major saponin mixture bacoside a in Bacopa monnieri by HPLC. Phytochemical Analysis. 2005; 16(1):24–29. doi/10.1002/pca.805
4.    Deepak M. Amit A. ‘Bacoside B’ - the need remains for establishing identity. Fitoterapia. 2013; 87:7–10. doi: 10.1016/j.fitote.2013.03.011
5.    Shinomol GK. Bharath MMS. Exploring the Role of “Brahmi” (Bocopa monnieri and Centella asiatica) in Brain Function and Therapy, Recent Patents on Endocrine. Metabolic & Immune Drug Discovery. 2011; 5:33-49. doi/10.2174/187221411794351833
6.    Banerjee A. Schepmann D. Kohler J. Würthwein EU. Wünsch BU. Synthesis and SAR studies of chiral non-racemic dexoxadrol analogues as uncompetitive NMDA receptor antagonists. Bioorganic & Medicinal Chemistry. 2010; 18:7855–7867. doi/ 10.1016/j.bmc.2010.09.047
7.    Chen HS. Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells. Journal of Physiology. 1997; 499 (1):27–49. doi/10.1113/jphysiol. 1997.sp021909
8.    Chen HS. Pellegrini JW. Aggarwal SK. Lei SZ. Jensen FE. Liptpn SA. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. Journal of Neurological science. 1992; 12(11):4427–4436. doi/ 10.1523/JNEUROSCI.12-11-04427.1992
9.    Winblad B. Poritis N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). International Journal of Geriatric Psychiatry. 1999; 14(2):135–146. doi/10.1002/(sici)1099-1166(199902)14:2<135:aid-gps906>3.0.co;2-0
10.    Reisberg B. Doody R. Stöffler A. Schmitt F. Ferris S. Mobius HJ. Memantine in moderate-to-severe Alzheimer’s Disease. New England Journal of Medicine. 2003; 348(14):1333–1341. doi/10.1056/NEJMoa013128
11.    Tamilselvan M. Tamilanban T. Chitra V. Unfolding Remedial Targets for Alzheimer’s Disease. Research J. Pharm. and Tech 2020; 13(6):3021-3027. doi/10.5958/0974-360X.2020.00534.X
12.    Zhang Y. Li P. Feng J. Wu M. Review on Dysfunction of NMDA receptors in Alzheimer’s Disease. Neurological Science. 2016, 37:1039–1047. doi/10.1007/s10072-016-2546-5
13.    Maragos WF. Greenamyre JT. Penney JB. Young AB. Glutamate dysfunction in Alzheimer's Disease: a hypothesis. Trends in neurosciences. 1987; 10(2):65-8doi/10.1016/0166-2236(87)90025-7
14.    Surabhi. Singh BK. Alzheimer’s Disease: a comprehensive review. International Journal of Pharmaceutical Science and Research. 2019; 10(3):993-1000. doi/ 10.13040/IJPSR.0975-8232.10(3).993-00
15.    Bhushan I. Kour M. Kour G. Gupta S. Sharma S. Yadav A. Alzheimer’s Disease: Causes & treatment – A review. Annals of Biotechnology. 2018; 1(1):1002. doi/10.33582/2637-4927/1002
16.    Herholz K. Ebmeier K. Clinical amyloid imaging in Alzheimer’s Disease. Lancet Neurology. 2011; 10:667–70. doi/ 10.1016/S1474-4422(11)70123-5
17.    Kabir T. Sufian MA. Uddin MS. Begum MM. Akhter S. Islam A et al NMDA Receptor Antagonists: Repositioning of Memantine as a Multitargeting Agent for Alzheimer's Therapy. Current Pharmaceutical Design. 2019; 25(33):3507-14. doi/10.2174/1381612825666191011102444
18.    Uddin MS. Mamun AA. Takeda S. Sarwar MS. Begum MM. Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics. 2019; 19(2):87-94. doi/ 10.1111/psyg.12368
19.    Puzzo D. Privitera L. Dale E. Fa M. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. Journal of Neuroscience. 2008; 28(53):14537-45. doi/10.1523/JNEUROSCI.2692-08.2008
20.    Lee HG. Perry G. Moreira PI. Garrett MR. Tau phosphorylation in Alzheimer’s Disease: pathogen or protector? Trends in Molecular Medicine. 2005; 11(4):164-9. doi/ 10.1016/j.molmed.2005.02.008
21.    Velraj M. Lavaniya N. Alzheimer’s Disease and a Potential Role of Herbs-A Review. Research J. Pharm. and Tech. 2018; 11(6):2695-2700. doi/ 10.5958/0974-360X.2018.00498.5
22.    Dhinakaran S. Tamilanban T. Chitra V. Targets for Alzheimer’s Disease. Research J. Pharm. and Tech. 2019; 12(6):3073-3077. doi/ 10.5958/0974-360X.2019.00521.3
23.    Srikanth Y. Tamilanban T. Chitra V. Medicinal plants Targeting Alzheimer’s Disease - A Review. Research J. Pharm. and Tech. 2020; 13(7):3454-3458. doi/ 0.5958/0974-360X.2020.00613.7
24.    Venkatachalam S. Jaiswal A. De A. Vijayakumar RK. Repurposing Drugs for Management of Alzheimer Disease. Research J. Pharm. and Tech. 2019; 12(6):3078-3088. doi/10.5958/0974-360X.2019.00522.5
25.    Sanmugam K. Depression is a Risk Factor for Alzheimer Disease- Review. Research J. Pharm. and Tech. 2015; 8(8):1056-1058. doi/10.1001/archpsyc.63.5.530
26.    Markowitsch HJ. Staniloiu A. Amnesic disorders. Lancet. 2012; 380:1429–1440. Doi/ 10.1016/S0140-6736(11)61304-4
27.    Scoville WB. Milner B. Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry. 1957; 20:11–21. doi/ 10.1136/jnnp.20.1.11
28.    Selkoe DJ. Alzheimer’s Disease: genes, proteins, and therapy. Physiological Reviews. 2001; 81:741– 766. doi/ 10.1152/physrev.2001.81.2.741
29.    Priller C. Bauer T. Mitteregger G. Krebs B. Kretzschmar HA. Herms J. Synapse formation and function is modulated by the amyloid precursor protein. Journal of Neuroscience. 2006; 26:7212–7221. doi/10.1523/JNEUROSCI.1450-06.2006
30.    Choudhury S. Vellapandian C. Alzheimer’s Disease Pathophysiology and its Implications. Research J. Pharm. and Tech. 2019; 12(4):2045-2048. doi/ 10.5958/0974-360X.2019.00338.X
31.    Aanandhi MV. Kumar YP. Chowdary BRP. Praveen D. A Review on the Role of Presenilin in Alzheimer’s Disease. Research J. Pharm. and Tech. 2018; 11(5):2149-2151. doi/ 10.5958/0974-360X.2018.00397.9
32.    Balmik AA. Chinnathambi S. Multi-faceted role of melatonin in neuroprotection and amelioration of Tau aggregates in Alzheimer’s Disease. Journal of Alzheimer's Disease. 2018; 62(4):1481-1493. doi/ 10.3233/JAD-170900
33.    Citron M. Alzheimer’s Disease: strategies for disease modification. Nature Reviews Drug Discovery 2010; 9:387−398. doi/ 10.1038/nrd2896
34.    Nordberg A. Neuroreceptor changes in Alzheimer disease. Cerebrovascular and Brain Metabolism Reviews. 1992; 4:303−328. PMID: 1486017
35.    Xia P. Chen HSV. Zhang D. Lipton SA. Memantine preferentially blocks extra synaptic over synaptic NMDA receptor currents in hippocampal autapses. Journal of Neuroscience. 2010; 30:11246−11250. doi/ 10.1523/JNEUROSCI.2488-10.2010
36.    Sonkusare SK. Kaul CL. Ramarao P. Dementia of Alzheimer’s Disease and other neurodegenerative disorders—memantine, a new hope, Pharmacological Research. 2005; 51:1–17. doi/ 10.1016/j.phrs.2004.05.005
37.    Khachaturian ZS. Diagnosis of Alzheimer’s Disease. Archieves of Neurology. 1985; 42:1097–105. doi/ 10.1001/archneur.1985.04060100083029
38.    Karthika S. Kannappan N. Suriyaprakash TNK. Effect of Medicinal plants on amyloid β1-42 Intoxicated SH-SY5Y cell Lines - As Neuroprotective Evaluation. Research J. Pharm. and Tech. 2020; 13(7):3351-3355. doi/ 10.5958/0974-360X.2020.00595.8
39.    Vishnupriya P. Padma VV. A Review on the Antioxidant and Therapeutic Potential of Bacopa monnieri. Reactive Oxygen Species. 2017; 3(8):111–120. doi/ 10.20455/ROS.2017.817
40.    Singh RH. Narsimhamurthy K. Singh G. Neuro nutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology. 2008; 9:369-74. doi/ 10.1007/s10522-008-9185-z
41.    Chakravarty AK. Sarkar T. Masuda K. Shiojima K. Nakane T. Kawahara N. Bacopaside I and II: Two pseudo jujubogenins glycosides from Bacopa monnieri. Phytochemistry. 2001; 58:5536. doi/ 10.1016/s0031-9422(01)00275-8
42.    Mahato SB. Garai S. Chakravarty AK. Bacopa saponins E and F: Two jujubogenin bisdesmosides from Bacopa monnieri. Phytochemistry. 2000; 53:711-4. doi/ 10.1016/s0031-9422(99)00384-2
43.    Hosamani R. Muralidhara. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology. 2009; 30:977-85. doi/ 10.1016/j.neuro.2009.08.012
44.    Chowdhuri DK. Parmar D. Kakkar P. Shukla R. Seth PK. Srimal RC. Antistress effects of bacosides of Bacopa monnieri: Modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytotherapy Research. 2002; 16:639-45. doi/ 10.1002/ptr.1023
45.    Saraf MK. Prabhakar S. Anand A. Neuroprotective effect of Bacopa monnieri on ischemia induced brain injury. Pharmacology Biochemistry Behaviour. 2010; 97:192-7. doi/ 10.1016/j.pbb.2010.07.017
46.    Aswathi T. Venkateswaramurthy N. Sambath Kumar R. A Review on Relevance of Herbal Medications for Psychiatric Patients. Research J. Pharm. and Tech. 2019; 12(7):3151-3156. doi/ 10.5958/0974-360X.2019.00531.6
47.    Das A. Shanker G. Nath C. Pal R. Sing S. Sing H. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav. 2002; 73(4):893-900. doi/ 10.1016/s0091-3057(02)00940-1
48.    Debnath T. Kim D. Lim B. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules. 2013;18(6):7253-7270. doi/ 10.3390/molecules18067253
49.    Anand T. Pandareesh MD. Bhat PV. Venkataramana M. Anti-apoptotic mechanism of Bacoside rich extract against reactive nitrogen species induced activation of iNOS/Bax/caspase 3 mediated apoptosis in L132 cell line. Cytotechnology. 2014; 66(5):823-838. doi/ 10.1007/s10616-013-9634-7
50.    Kalyani MI. Lingaraju, SM. Salimath BP. A pro-apoptotic 15-kDa protein from Bacopa monnieri activates caspase-3 and downregulates Bcl-2 gene expression in mouse mammary carcinoma cells. Journal of natural medicines. 2013; 67(1):123-136. doi/ 10.1007/s11418-012-0661-z
51.    Calabrese C. Gregory WL. Leo M. Kremer D. Bone K. Oken B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. Journal of Alternative and Complementary Medicine. 2008; 14:707–713. doi/ 10.1089/acm.2008.0018
52.    Stough C. Scholey A. Cropley V. Wesnes K. Zangara A. Pase M et al Examining the cognitive effects of a special extract of Bacopa monniera (CDRI08: Keenmnd): a review of ten years of research at Swinburne University. Journal of Pharmaceutical Science. 2013; 16:254–258. doi/ 10.18433/j35g6m
53.    Downey LA. Kean J. Nemeh F. Lau A. Poll A. Gregory R et al An acute, double-blind, placebo-controlled crossover study of 320 mg and 640 mg doses of a special extract of Bacopa monnieri (CDRI 08) on sustained cognitive performance. Phytotherapy Research. 2013; 27:1407–1413. doi/ 10.1002/ptr.4864
54.    Rai R. Singh HK. Prasad S. A special extract of Bacopa monnieri (CDRI-08) restores learning and memory by upregulating expression of the NMDA receptor subunit GluN2B in the brain of scopolamine-induced amnesic mice. Evidence Based Complementary and Alternative Medicine. 2015; 2015:254303. doi/ 10.1155/2015/254303
55.    Rajan KE. Preethi J. Singh HK. Molecular and functional characterization of Bacopa monniera: a retrospective review. Evidence Based Complementary and Alternative Medicine. 2015; 2015:945217. doi/ 10.1155/2015/945217
56.    Saraf MK. Prabhakar S. Khanduja KL. Anand A. Bacopa monniera attenuates scopolamine-induced impairment of spatial memory in mice. Evidence Based Complementary and Alternative Medicine. 2011; 2011:236186. doi/ 10.1093/ecam/neq038
57.    Kumar N. Abichandani LG. Thawani V. Gharpure KJ. Naidu MUR. Ramana GV. Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: a six-week, randomized placebo-controlled trial. Evidence Based Complementary and Alternative Medicine. 2016; 2016:4103423. doi/ 10.1155/2016/4103423
58.    Thakkar VT. Deshmukh A. Hingorani L. Juneja P. Baldaniya L. Patel A et al Development and optimization of dispersible tablet of Bacopa monnieri with improved functionality for memory enhancement. Journal of Pharmacy and Bioallied Science. 2017; 9:208–215. doi/ 10.4103/jpbs.JPBS_8_17
59.    Balakumar P. Arora M. Ganti SS. Reddy J. Recent advances in pharmacotherapy for diabetic nephropathy: Current perspectives and future directions. Pharmacological Research. 2009; 60:24–32. doi/ 10.1016/j.phrs.2009.02.002
60.    Kaur N. Kishore L. Singh R. Attenuating diabetes: What really works? Current Diabetes Reviews. 2016; 12:259–278. doi/ 10.2174/1573399811666150826115410
61.    Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991; 40:405-412. doi/ 10.2337/diab.40.4.405
62.    Said G. Diabetic neuropathy—a review. Neurology. 2007; 3(6):331-339. doi/ 10.1038/ncpneuro0504
63.    Martin CL. Albers J. Herman WJ. Cleary P. Waberski B. Greene DA et al Neuropathy among the Diabetes Control and Complications Trial Cohort 8 years after trial completion. Diabetes Care. 2006; 29:340–344. doi/ 10.2337/diacare.29.02.06.dc05-1549
64.    Oates PJ. Polyol pathway and diabetic peripheral neuropathy. International Review of Neurobiology. 2002; 50:325–392. doi/ 10.1016/s0074-7742(02)50082-9
65.    Tomlinson DR. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia. 1999; 42:1271–1281. doi/ 10.1007/s001250051439
66.    Toth C. Ronh LL. Yang C. Martinez J. Song F. Ramji N et al Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes. 2008; 57:1002–1017. doi/10.2337/db07-0339
67.    Dahiya RS. Kaur N. Kishore L. Gupta GK. Management of diabetic complications: A chemical constituents-based approach. Journal of Ethnopharmacology. 2013; 150:51-70. doi/ 10.1016/j.jep.2013.08.051
68.    Shahid M. Subhan F. Ahmad N. Ullah I. A bacosides containing Bacopa monnieri extract alleviates allodynia and hyperalgesia in the chronic constriction injury model of neuropathic pain in rats. BMC Complementary and Alternative Medicine. 2017; 17:293. doi/ 10.1186/s12906-017-1807-z
69.    Kishore L. Kaur N. Singh R. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy, Journal of Functional Foods. 2017; 34:237–247. doi/ 10.1016/j.jff.2017.04.044
70.    Morgan A. Stevens J. Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. Journal of Alternative and Complementary Medicine. 2010; 16:753–759. doi/10.1089/acm.2009.0342

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available