Author(s):
Nurul Hikmah Harun, Mohamad Firdaus Mohamad
Email(s):
nurulhikmah@unisza.edu.my
DOI:
10.52711/0974-360X.2022.00634
Address:
Nurul Hikmah Harun*, Mohamad Firdaus Mohamad
School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kampus Gong Badak, Gong Badak, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia.
*Corresponding Author
Published In:
Volume - 15,
Issue - 8,
Year - 2022
ABSTRACT:
Recently, the available synthetic drugs to treat immune related diseases have been reported to produce many side effects to the consumer. For instance, corticosteroids are used to reduce inflammation during infection but able to cause adverse effects such as bruising, muscle weakness, pathologic fractures, weight gain and sleep disturbances. As an alternative for a safer alternative for preventive and treatment agents with low risk of side effect, Zingiber officinale which is known as ginger or ‘halia’ in Malaysia has a good prospect. It is because this herb is used as traditional medicine among community to treat several ailments, including immune and infectious diseases. Several studies have shown that crude extracts and bioactive components of Z. officinale possessed diverse pharmacological properties such as anticancer, anti-inflammatory, antimicrobial, antioxidant and immunomodulatory. The objective of this research is to find out the effects of Z. officinale on the immunomodulatory activities from the selected previous studies from year 2000 to 2020. Briefly, this study involves 11 randomized controlled trials (RCTs) that determined immunomodulatory activities of Z. officinale. The results of systematic analysis showed that Z. officinale exhibits immunomodulatory activities for both in vitro and in vivo evaluations. However, some limitation should be aware with the detailed reporting on the controls used in the included studies. Future well-designed RCTs with detailed reporting on the controls are required for providing additional data to prove the consequences of Z. officinale on the immunomodulatory as well as safety data of consuming this plant.
Cite this article:
Nurul Hikmah Harun, Mohamad Firdaus Mohamad. The Immunomodulatory effects of Zingiber officinale (Ginger): A Systematic Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3776-1. doi: 10.52711/0974-360X.2022.00634
Cite(Electronic):
Nurul Hikmah Harun, Mohamad Firdaus Mohamad. The Immunomodulatory effects of Zingiber officinale (Ginger): A Systematic Review. Research Journal of Pharmacy and Technology. 2022; 15(8):3776-1. doi: 10.52711/0974-360X.2022.00634 Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-76
REFERENCES:
1. Konradt, C, Hunter, CA. Pathogen Interactions with Endothelial Cells and the Induction of Innate and Adaptive Immunity. European Journal of Immunology. 2018. 48(10): 1607-1620. doi: 10.1002/eji.201646789
2. Marshall, JS, Warrington, R, Watson, W, Kim, HL. An Introduction to Immunology and Immunopathology. Allergy, Asthma and Clinical Immunology. 2018. 14(2): 49-55. doi: https://doi.org/10.1186/s13223-018-0278-1
3. Carrillo, JLM, Rodríguez, FPC, Coronado, OG, García, MAM, Cordero, JFC. Physiology and Pathology of Innate Immune Response Against Pathogens. Physiology and Pathology of Immunology. 2017. 100-134. doi: https://doi.org/10.5772/intechopen.70556
4. Nayak, R. Diseases of the Immune System. Exam Preparatory Manual for Undergraduates: Pathology. Jaypee Brothers Medical Publisher. 2017.
5. Ma, L, Xue, HB, Gao, T, Gao, ML, Zhang, YJ. Notch1 Signaling Regulates the Th17/Treg Immune Imbalance in Patients with Psoriasis Vulgaris. Mediators Inflammation. 2018. 3069521: 1-10. doi: https://doi.org/5/2018/306952110.115
6. Horwitz, DA, Fahmy, TM, Piccirillo, CA, Cava, AL. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases Trends in Immunology. 2019. 40(10): 888-908. doi: 10.1016/j.it.2019.08.003
7. Collins, L, Quinn, A, Stasko, T. Skin Cancer and Immunosuppression. Dermatologic Clinics. 2019. 37(1) 83-94. doi: https://doi.org/10.1016/j.det.2018.07.009
8. McBride, JA, Striker, R. Imbalance in the Game of T cells: What can the CD4/CD8 T-cell Ratio Tell Us About HIV and Health? PLoS Pathogen. 2017. 13(11): e1006624. doi: https://doi.org/10.1371/ journal. ppat.1006624
9. Feuillet, V, Canard, B, Trautmann, A. Combining Antivirals and Immunomodulators to Fight COVID-19. Trends Immunology. 2021. 42(1): 31-44. doi: 10.1016/j.it.2020.11.003. Epub 2020 Nov 13.
10. Catanzaro, M, Corsini, E, Rosini, M, Racchi, M, Lanni, C. Immunomodulators Inspired by Nature: A review on Curcumin and Echinacea. Molecules. 2018. 23(11). doi: https://doi.org/10.3390/molecules23112778
11. Bedoui, Y, Guillot, X, Selambarom, J, Guiraud, P, Giry, C, Jaffar-Bandjee, MC, Ralandison, S, Gasque, P. Methotrexate An Old Drug With New Tricks. 2019. International Journal of Molecular Sciences, 20(20): 5023. doi: https://doi.org/10.3390/ijms20205023
12. Hannoodee, M, and Mittal, M. Methotrexate. StatPearls. 2021. https://www.ncbi.nlm.nih.gov/books/NBK556114/
13. Dyson, ZA, Klemm, EJ, Palmer, S, Dougan, G. Antibiotic Resistance and Typhoid. Clinical Infectious Diseases, 2019. 68(2), 165-170. doi: 10.1093/cid/ciy1111
14. Cano, EJ, Fuentes, XF, Campioli, CC, O’Horo, JC, Omar Abu, AS; Odeyemi, Y, Yadav, H, Temesgen, Z. Impact of Corticosteroids in Coronavirus Disease 2019 Outcomes Systematic Review and Meta-analysis. Critical Care: Original Research. 2021. 159(3): 1019-1040.
15. Burrage, DR, Koushesh, S, Sofat, N. Immunomodulatory Drugs in the Management of SARS-CoV-2. In Frontiers in Immunology. 2020. 11, 1844. doi: https://doi.org/10.3389/fimmu.2020.01844
16. Yasir, M, Goyal, A, Baskal, P, and Sonthalia, S, Corticosteroid Adverse Effects. In StatPearls. StatPearls Publishing. 2019. doi: http://www.ncbi.nlm.nih.gov/pubmed/30285357
17. Kar, MD, Shivhare, RS, Ugale, VG. Anti-inflammatory Potentials of Some Novel Murrayanine Containing 1,3,4-Oxadiazole derivatives. 2018. Asian Journal of Pharmacy and Technology, 8(1): 47-51. doi: 10.5958/2231-5713.2018.00008.9
18. Sindhu, TJ, Arathi,KN, Akhilesh, KJ, Jose, A, Binsiya, KP, Blessy, T, Elizabeth, W. Antiviral Screening of Clerodol Derivatives as COV 2 main protease Inhibitor in Novel Corona Virus Disease: In silico Approaches. 2020. Asian Journal of Pharmacy and Technology, 10(2): 60-64.doi:10.5958/2231-5713.2020.00012.4
19. Samir, D, Manel, A, Abir, H. Phytochemical Analysis and Antioxidant Property of Rhizome Extracts Aqueous of Phragmites australis in Alloxan Diabetic Rats. 2019. Asian Journal of Pharmacy and Technology, 9(4): 249-252. doi: 10.5958/2231-5713.2019.00041.2
20. Babanrao, DD, Ramrao, SM. Evaluation of In Vivo Analgesic and Anti-Inflammatory Activity of Ethanolic Extract of Medicinal Plant-Lagenaria siceraria. 2019. Asian Journal of Pharmacy and Technology, 9(2): 75-78. doi: 10.5958/2231-5713.2019.00013.8
21. Iqbal, S, Khalid, S, Shahid, S. Pharmacological Properties of Rosa damascene. 2020. Asian Journal of Pharmacy and Technology, 10(3): 183-186. doi: 10.5958/2231-5713.2020.00031.8
22. Christy, S, Nivedhitha, MS. Antimicrobial Efficacy of Azadirachta indica Against Streptococcus mutans-An In vitro. 2019. Study Asian Journal of Pharmacy and Technology, 9(3): 149-153. doi: 10.5958/2231-5713.2019.00025.4
23. Aulifa, DL, Sakinah, H, Hesti, R, Arif, B. Antibacterial Effects of Black Mulberry (Morus nigra) Stem Bark Extract on Streptococcus mutans. 2021. Research Journal of Pharmacy and Technology. 14(8): 4399-4402. Doi: 10.52711/0974-360X.2021.00763
24. Ali, EA. Therapeutic Properties of Medicinal Plants: A Review of Their Immunological Effects (Part 1). 2015. Asian Journal of Pharmaceutical Research. 5(3): 208-216.
25. Shantilal, S, Vaghela, JS. Investigation of Immunomodulatory Activity of Methanolic Extract and Isolated Compound of Pavonia odorata Roots in Mice. 2021 Research Journal of Pharmacy and Technology. 14(7): 3489-3494. Doi: 10.52711/0974-360X.2021.00605
26. Fatmawati, S, Rizky, DL, Riyaniarti, EW, Erryana, M, Tri, DW, Muhaimin, R. Fermented Ethanolic Extract of Moringa oleifera leaves with Lactobacillus plantarum FNCC 0137 as Immunomodulators on Salmonella typhi-Infected Mice. 2020 Research Journal of Pharmacy and Technology. 2020; 13(12):.5777-5782. Doi: 10.5958/0974-360X.2020.01007.0
27. Harun, NH, Ahmad, WANW, Suppian, R. Immunostimulatory Effects of Asiatic Acid and Madecassoside on the Phagocytosis Activities of Macrophages Cell Line (J774A.1). Journal of Applied Pharmaceutical Science. 2021. 11(11): 104-111.
28. Harun, NH, Ahmad, WANW, Suppian, R. The Effects of Individual and Combination of Asiatic Acid and Madecassoside Derived from Centella asiatica (Linn.) on the Viability Percentage and Morphological Changes of Mouse Macrophage Cell Lines (J774A.1). Journal of Applied Pharmaceutical Science. 2018, 8(11): 109–115.
29. Harun, NH, Septama, AW, Wan Ahmad, WAN, Suppian, R. The Potential of Centella asiatica (Linn.) Urban as an Anti-Microbial and Immunomodulator Agent: A Review. Natural Product Sciences. 2019. 25(2): 92-102
30. Mao, QQ, Xu, XY, Cao, SY, Gan, RY, Corke, H, Beta, T, Li, HB. Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). 2019. Foods. 8(6). doi: https://doi.org/10.3390/foods8060185
31. Rampogu, S, Baek, A, Gajula, RG, Zeb, A, Bavi, RS, Kumar, R, Kim, Y, Kwon, Y J, Lee, KW. Ginger (Zingiber officinale) Phytochemicals-Gingerenone-A and Shogaol Inhibit Sahppk: Molecular Docking, Molecular Dynamics Simulations and In Vitro Approaches. 2018. Annals of Clinical Microbiology and Antimicrobials, 17(1): 16. doi: https://doi.org/10.1186/s12941-018-0266-9
32. Srinivasan, K. Ginger Rhizomes (Zingiber officinale): A Spice with Multiple Health Beneficial Potentials. 2017. Pharma Nutrition, 5(1): 18-28. doi: https://doi.org/10.1016/j.phanu.2017.01.001
33. Cakir, U, Tayman, C, Serkant, U, Yakut, HI, Cakir, E, Ates, U, Koyuncu, I, Karaogul, E. Ginger (Zingiber officinale Roscoe) for the Treatment and Prevention of Necrotizing Enterocolitis. 2018. Journal of Ethnopharmacology, 225: 297–308. doi: https://doi.org/10.1016/j.jep.2018.07.009
34. Elmowalid, GA, Abd El-Hamid, MI, Abd El-Wahab, AM, Atta, M, Abd El-Naser, G, Attia, AM. Garlic and Ginger Extracts Modulated Broiler Chicks Innate Immune Responses and Enhanced Multidrug Resistant Escherichia coli O78 Clearance. 2019. Comparative Immunology, Microbiology and Infectious Diseases, 66: 101334. doi: https://doi.org/10.1016/j.cimid.2019.101334
35. Syafitri, DM, Levita, J, Mutakin, M, Diantini, A. A Review: Is Ginger (Zingiber officinale var. Roscoe) Potential for Future Phytomedicine? Indonesian Journal of Applied Sciences, 2018. 8(1). doi: https://doi.org/10.24198/ijas.v8i1.16466
36. Kumari, I, Walia, B, Chaudhary, G. Zingiber officinale (ginger): A Review Based Upon Its Ayurvedic and Modern Therapeutic Properties. 2021. International Journal of Current Research, 13(3): 16583-16587. doi: https://doi.org/10.24941/ijcr.40963.03.2021
37. Munn, Z, Stern, C, Aromataris, E, Lockwood, C, Jordan, Z. What Kind of Systematic Review Should I Conduct? A Proposed Typology and Guidance for Systematic Reviewers in the Medical and Health Sciences. 2018. BMC Medical Research Methodology, 18(5): 1-9. doi: https://doi.org/10.1186/S12874-017-0468-4
38. Moher, D, Liberati, A, Tetzlaff, J, Altman, DG, Altman, D, Antes, G, Atkins, D, Barbour, V, Barrowman, N, Berlin, JA, Clark, J, Clarke, M, Cook, D, D’Amico, R, Deeks, JJ, Devereaux, PJ, Dickersin, K, Egger, M, Ernst, E,Tugwell, P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. 2009. PLoS Medicine, 6(7): e1000097. doi: https://doi.org/10.1371/journal.pmed.1000097
39. Dall’Acqua, S, Grabnar, I, Verardo, R, Klaric, E, Marchionni, L, Luidy-Imada, E, Sut, S, Agostinis, C, Bulla, R, Perissutti, B, Voinovich, D. Combined Extracts of Echinacea angustifolia DC and Zingiber officinale Roscoe in Softgel Capsules: Pharmacokinetics and Immunomodulatory Effects Assessed by Gene Expression Profiling. 2019. Phytomedicine, 65. doi: https://doi.org/10.1016/j.phymed.2019.153090
40. Cakir, U, Tayman, C, Serkant, U, Yakut, HI, Cakir, E, Ates, U, Koyuncu, I, Karaogul, E. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. 2018. Journal of Ethnopharmacology, 225: 297–308. doi: https://doi.org/10.1016/j.jep.2018.07.009
41. Amri, M, Touil-Boukoffa, C. In Vitro Anti-Hydatic and Immunomodulatory Effects of Ginger and [6]-Gingerol. 2016. Asian Pacific Journal of Tropical Medicine, 9(8): 749–756. Doi: https://doi.org/10.1016/j.apjtm.2016.06.013
42. Elmowalid, GA, Abd El-Hamid, MI, Abd El-Wahab, AM, Atta, M, Abd El-Naser, G, Attia, AM. Garlic and Ginger Extracts Modulated Broiler Chicks Innate Immune Responses and Enhanced Multidrug Resistant Escherichia coli O78 clearance. 2019. Comparative Immunology, Microbiology and Infectious Diseases, 66, 101334. doi: https://doi.org/10.1016/j.cimid.2019.101334
43. Khan, AM, Shahzad, M, Raza AMB, Imran, M, Shabbir, A. Zingiber officinale Ameliorates Allergic Asthma Via Suppression of Th2-Mediated Immune Response. 2015. Pharmaceutical Biology, 53(3): 359-367. doi: https://doi.org/10.3109/13880209.2014.920396
44. Khan, S, Karmokar, A, Howells, L, Thomas, A, Bayliss, R, Gescher, A, Brown, K. Treatment with 6-Gingerol Regulates Dendritic Cell Activity and Ameliorates the Severity of Experimental Autoimmune Encephalomyelitis. 2016. Molecular Nutrition & Food Research, 1–12. doi: https://doi.org/10.1002/mnfr.201801356.
45. Wilasrusmee, C, Kittur, S, Siddiqui, J, Bruch, D, Wilasrusmee, S, Kittur, DS. In vitro Immunomodulatory Effects of Ten Commonly Used Herbs on Murine Lymphocytes. 2002. Journal of Alternative and Complementary Medicine, 8(4): 467-475. doi: https://doi.org/10.1089/107555302760253667
46. Abdi, T, Mahmoudabady, M, Marzouni, HZ, Niazmand, S, Khazaei, M. Ginger (Zingiber Officinale Roscoe) Extract Protects the Heart Against Inflammation and Fibrosis in Diabetic Rats. 2020. Canadian Journal of Diabetes, 45(3): 220-227. doi: https://doi.org/10.1016/j.jcjd.2020.08.102
47. Bhaskar, A, Kumari, A, Singh, M, Kumar, S, Kumar, S, Dabla, A, Chaturvedi, S, Yadav, V, Chattopadhyay, D, Prakash Dwivedi, V. [6]-Gingerol Exhibits Potent Anti-Mycobacterial and Immunomodulatory Activity Against Tuberculosis. 2020. International Immunopharmacology, 87(6), 106809. doi: https://doi.org/10.1016/j.intimp.2020.106809
48. Lee, W, Hwang, MH, Lee, Y, Bae, JS. Protective Effects of Zingerone on Lipopolysaccharide-Induced Hepatic Failure Through the Modulation of Inflammatory Pathways. 2018. Chemico-Biological Interactions, 281: 106–110. doi: https://doi.org/10.1016/j.cbi.2017.12.031
49. Zhang, FL, Zhou, BW, Yan, ZZ, Zhao, J, Zhao, BC, Liu, WF, Li, C, Liu, KX. 6-Gingerol attenuates macrophages pyroptosis via the inhibition of MAPK signaling pathways and predicts a good prognosis in sepsis. 2020. Cytokine, 125(9): 154854. doi: https://doi.org/10.1016/j.cyto.2019.154854