Author(s): Ola H. Jasim, Majid M. Mahmood, Ali H. Ad’hiah

Email(s): majidmahmood93@yahoo.com

DOI: 10.52711/0974-360X.2022.00620   

Address: Ola H. Jasim1, Majid M. Mahmood1, Ali H. Ad’hiah2
1Department of Biology, College of Science, Mustansiriyah University.
2Tropical-Biological Research Unit, College of Science, University of Baghdad.
*Corresponding Author

Published In:   Volume - 15,      Issue - 8,     Year - 2022


ABSTRACT:
Prediabetes has been a target for research to understand risk factors that may predict it. The presence of liver function enzymes is one of the risk factors (alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]). Therefore, the aim of present cross-sectional investigation was to determine the predictive relevance of three enzymes in the development of prediabetes in Iraqi adults. Three groups of individuals have included: 30 apparently healthy individuals (normoglycemia), 58 prediabetics, and 30 patients who suffer from type 2 diabetes mellitus (T2DM). Results revealed that ALT median was significantly increased in prediabetes compared to normoglycemia and diabetes (19.7 vs. 13.3 and 12.0 IU/L, respectively; p = 0.001). For AST, there were no significant differences between the three groups investigated (p = 0.444). In the case of ALP, significantly increased medians were observed in prediabetes and diabetes compared to normoglycemia (90.4 and 87.5 vs. 70.6 IU/L, respectively; p = 0.007). ROC curve analysis revealed that ALT (AUC = 0.791; 95% CI =0.688 - 0.894; p = 0.001; cut-off value = 16.1IU/L; sensitivity = 72.4%; specificity = 73.3%) and ALP (AUC = 0.724; 95% CI = 0.621 - 0.828; p = 0.001; cut-off value = 80.2 IU/L; sensitivity = 67.2%; specificity = 66.7%) were good predictors in differentiating between prediabetes and normoglycemia. In diabetes, both variables failed to show such prediction, and there was no significant differentiating power. Logistic regression analysis confirmed the significance of ALT and ALP in prediabetes. An OR of 7.22(95% CI = 2.71 - 19.22; p = 0.001) was related with ALT. ALP was also linked to a higher incidence of prediabetes A greater frequency of prediabetes was also associated to ALP (OR = 5.38; 95 percent CI = 2.01 - 14.38; p = 0.001). In the case of diabetes, ALT and ALP were not linked to a higher risk of developing the condition. To summarize, this research shows that ALT and ALP are effective predictors of prediabetes, but further research is needed to fully comprehend the mechanism underlying the link between liver function enzymes and diabetes risk.


Cite this article:
Ola H. Jasim, Majid M. Mahmood, Ali H. Ad’hiah. The significance of Liver Function Tests in detecting prediabetes as a prognostic factor. Research Journal of Pharmacy and Technology. 2022; 15(8):3697-2. doi: 10.52711/0974-360X.2022.00620

Cite(Electronic):
Ola H. Jasim, Majid M. Mahmood, Ali H. Ad’hiah. The significance of Liver Function Tests in detecting prediabetes as a prognostic factor. Research Journal of Pharmacy and Technology. 2022; 15(8):3697-2. doi: 10.52711/0974-360X.2022.00620   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-62


REFERENCES:
1.    Njolstad P. Sagen J. Bjorkhaug L. Odili S. Shehadeh N. et al. Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes Journal. 2003; 11(52): 2854-2860. doi: 10.2337/diabetes.52.11.2854.
2.    Boles A. Kandimalla R. Reddy PH. Dynamics of diabetes and obesity: epidemiological perspective. Biochimica et Biophysica Acta Molecular Basis of Disease. 2017; 1863(5): 1026-1036. doi: 10.1016/j.bbadis.2017.01.016.
3.    Wild S. Roglic G. Green A. Sicree R. King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5): 1047-1053. doi: 10.2337/diacare.27.5.1047.
4.    World Health Organization. (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation.
5.    Heianza Y. Arase Y. Kodama S. Hsieh SD. Tsuji H. et al. Effect of postmenopausal status and age at menopause on type 2 diabetes and prediabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 17 (TOPICS 17). Diabetes Care. 2013; 36(12): 4007-4014. doi: 10.2337/dc13-1048.
6.    Lozano I. Vander-Werf R. Bietiger W. Seyfritz E. Peronet C. et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Annal of the Nutral Metabolism. 2016; 13(1): 1-13. doi:10.1186/s12986-016-0074-1
7.    Duckworth WC. Hamel FG. Peavy DE. Hepatic metabolism of insulin. American Journal of Medicine. 1988; 85(5): 71-76. doi: 10.1016/0002-9343(88)90399-3
8.    Wang YL. Koh WP. Yuan JM. Pan A. Association between liver enzymes and incident type 2 diabetes in Singapore Chinese men and women. BMJ Open Diabetes Research Care. 2016; 4(1): e000296. doi: 10.1136/bmjdrc-2016-000296.
9.    André P. Balkau B. Charles MA. Eschwège E. Gamma-glutamyltransferase activity and development of the metabolic syndrome (IDF definition), in middle-aged men and women. Diabetes Care. 2007; 30(9): 2355-2361. https://doi.org/10.2337/dc07-0440
10.    Lee DH, Blomhoff R. Jacobs DRJr. Is serum gamma glutamyltransferase a marker of oxidative stress. Free Radicals Research. 2004; 38: 535-539. doi: 10.1080/10715760410001694026.
11.    Gautier A. Balkau B. Lange C. Tichet J. Bonnet F. Risk factors for incident type 2 diabetes in individuals with a BMI of< 27 kg/m 2: the role of γ-glutamyltransferase. Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetologia. 2010; 53(2): 247-253. doi: 10.1007/s00125-009-1602-6.
12.    Nakanishi N. Suzuki K. Tatara K. Serum γ-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men. Diabetes Care. 2004; 27(6): 1427-1432. oi: 10.2337/diacare.27.6.1427.
13.    Sattar N. Scherbakova O. Ford I. O’Reilly DSJ. Stanley A. et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes. 2004; 53(11): 2855-2860. doi: 10.2337/diabetes.53.11.2855.
14.    Ko SH. Baeg MK. Han KD. Ko SH. Ahn YB. Increased liver markers are associated with higher risk of type 2 diabetes. World Journal of Gastroenterology. 2015; 21(24): 7478. doi: 10.3748/wjg.v21.i24.7478.
15.    American Diabetes Association Standards of medical care in diabetes. Diabetes Care. 2016; 39(Suppl 1): S1–112.
16.    Tabák AG. Herder C. Rathmann W. Brunner EJ. Kivimäki M. Prediabetes: a high-risk state for developing diabetes. Lancet. 2012; 379(9833): 2279.‏ doi:10.1016/S0140-6736(12)60283-9
17.    Sitasuwan T. Lertwattanarak R. Prediction of type 2 diabetes mellitus using fasting plasma glucose and HbA1c levels among individuals with impaired fasting plasma glucose: a cross-sectional study in Thailand. BMJ Open. 2020; 10(11): e041269.‏ doi: 10.1136/bmjopen-2020-041269.
18.    Cicero AFG. Derosa G. Rosticci M. D’Addato S. et al. Long-term predictors of impaired fasting glucose and type 2 diabetes in subjects with family history of type 2 diabetes: a 12-years follow-up of the Brisighella Heart Study historical cohort. Diabetes Research and Clinical Practice. 2014; 104(1): 183-188.‏ doi: 10.1016/j.diabres.2014.02.005.
19.    Anuradha G. Gopalakrishnan SS. Vinodakumar HR. Relationship between liver enzymes and lipid profile in Pre-diabetes and type 2 diabetes mellitus patients. Annals of Tropical Medicine and Public Health. 2020; 23: 232-228.‏
20.    Srinivasan SR. Myers L. Berenson GS. Predictability of childhood adiposity and insulin for developing insulin resistance syndrome (syndrome X) in young adulthood: the Bogalusa Heart Study. Diabetes. 2002; 51(1): 204-209.‏ doi: 10.2337/diabetes.51.1.204.
21.    Neeland IJ. Turer AT. Ayers CR. Powell-Wiley TM. et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. The Journal of the American Medical Association (JAMA). 2012; 308(11): 1150-1159.‏ doi: 10.1001/2012.jama.11132.
22.    Liu PJ. Ma F. Lou HP. Chen Y. Visceral adiposity index is associated with pre-diabetes and type 2 diabetes mellitus in Chinese adults aged 20-50. Annals of Natural Metabolism. 2016; 68(4): 235-243.‏ doi: 10.1159/000446121.
23.    Freemantle N. Holmes JA. Hockey A. Kumar S. How strong is the association between abdominal obesity and the incidence of type 2 diabetes?. International Journal of Clinical Practice. 2008; 62(9): 1391-1396. doi:10.1111/j.1742-1241.2008.01805.x
24.    Larsson B. Narbro K. Sjöström CD. Swedish obese subjects study scientific group Lifestyle, diabetes and cardiovascular risk factors 10 years after bariatric surgery. The New England Journal of Medicine. 2004; 351: 2683-2693.
25.    Barbosa A. Brito J. Figueiredo P. Seabra A. Mendes R. Football can tackle type 2 diabetes: A systematic review of the health effects of recreational football practice in individuals with prediabetes and type 2 diabetes. Research in Sports Medicine. 2021; 29(3): 303-321. doi: 10.1080/15438627.2020.1777417.
26.    Mandal A. Bhattarai B. Kafle P. Khalid M. et al. Elevated liver enzymes in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease. Cureus. 2018; 10(11): e3626. doi: 10.7759/cureus.3626.
27.    Harris EH. Elevated liver function tests in type 2 diabetes. Clinical Diabetes. 2005; 23(3): 115-119.‏ https://doi.org/10.2337/diaclin.23.3.115
28.    Harpreet Kaur. Effectiveness of structured teaching programme regarding self care management in relation to prevention of complications among diabetics. Asian Journal of Nursing Education and Research. 2014; 4(3): 279-283.
29.    Ni H. Soe HHK. Htet A. Determinants of abnormal liver function tests in diabetes patients in Myanmar. International Journal of Diabetes Research. 2012; 1(3): 36-41. doi: 10.5923/j.diabetes.20120103.02
30.    Shrestha N. Bhatt NP. Neopane P. Dahal S. et al. Hepatic involvement with elevated liver enzymes in Nepalese subjects with type 2 diabetes mellitus. Internationl Journal of Biochemistry Research and Review. 2017; 16: 1-8.‏
31.    Sincy W. Symphoria Sr. A Study to assess the effect of awareness Programme on Compliance to Insulin Therapy among Patients with Diabetes Mellitus (DM) in a Selected Community Health Centre, Thrissur District. Asian Journal of Nursing Education and Research. 2016; 6(4): 464-470. DOI:10.5958/2349-2996.2016.00087.2
32.    Geetha V. Shrimant K. Sahu C. et al. Assess Quality of Life (QOL) and Glycemic Level among Type 2 Diabetic Patients in Global Hospital and Research Centre and its Units, Sirohi, Rajasthan. Asian Journal of Nursing Education and Research. 2017; 7(4): 577-582.
33.    Chen SCC. Tsai SP. Jhao JY. Jiang WK. et al. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: a prospective study of 132,377 adults. Scientific Reports. 2017; 7(1): 1-9.‏ doi: 10.1038/s41598-017-04631-7.
34.    Priya S. Sujeeta M. Knowledge on Management of Diabetes Mellitus among Patients with type II Diabetes Mellitus in a Selected Community Health Centre of Dadra and Nagar Haveli Area. Asian Journal of Nursing Education and Research. 2019; 9(1):109-112.
35.    Vozarova B. Stefan N, Lindsay RS. Saremi A. et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002; 51(6): 1889-1895.‏ https://doi.org/10.2337/diabetes.51.6.1889
36.    Chaudhari A. A study to assess the knowledge regarding foot care among diabetes mellitus patients in selected hospital mehsana. Asian J. Nursing Education and Research. 2020; 10(3): 330-332.
37.    Wang YL. Koh WP. Yuan JM. Pan A. Association between liver enzymes and incident type 2 diabetes in Singapore Chinese men and women. BMJ Open Diabetes Research Care. 2016; 4(1): e000296. doi: 10.1136/bmjdrc-2016-000296.
38.    Pranali SS. Vinit JC. Neelam P. Pharmacology of Combined Treatment of Saxagliptin Hydrochloride and Glibenclamide Therapy to treat Type-2 Diabetes. Asian Journal of Research in Pharmaceutical Sciences. 2016; 6(1): 59-61. DOI: 10.5958/2231-5659.2016.00009.6
39.    Hatano Y. Inoue K. Kashima S. Matsumoto M. Akimoto K. Serum Alanine Transaminase as a Predictor of Type 2 Diabetes Incidence: The Yuport Prospective Cohort Study. The Tohoku Journal of Expiremental Medicine. 2020; 251(3): 183-191.‏
40.    Marchesini G. Brizi M. Bianchi G. Tomassetti S. et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001; 50(8): 1844-1850.
41.    Yousaf A. Shahid S. The study of Anethum graveolens L. (Dill) in the case of Diabetes mellitus (DM). Asian Journal of Research in Pharmaceutical Sciences. 2020; 10(4):248-256. doi: 10.5958/2231-5659.2020.00045.4
42.    Malnick SDH. Beergabel M. Knobler H. Non-alcoholic fatty liver: a common manifestation of a metabolic disorder. Qjm: International Journal of Clinical Medicine. 2003; 96(10): 699-709. doi: 10.1093/qjmed/hcg120.
43.    Hotamisligil GS. Inflammatory pathways and insulin action. International Journal of Obesity. 2003; 27(3): S53-S55. doi: 10.1038/sj.ijo.0802502.
44.    Sitasuwan T. Lertwattanarak R. Prediction of type 2 diabetes mellitus using fasting plasma glucose and HbA1c levels among individuals with impaired fasting plasma glucose: a cross-sectional study in Thailand. BMJ Open, 2020; 10(11): e041269.‏ doi: 10.1136/bmjopen-2020-041269.
45.    Ghimire S. Shakya S. Shakya J. Acharya P. Pardh BD. Abnormal liver parameters among individuals with type 2 diabetes mellitus Nepalese population. Biochemical Pharmacology (Los Angels). 2018; 7(1): 2167-0501.‏

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available