Author(s): Winasih Rachmawati, Aliya Nur Hasanah, Fauzan Zein Muttaqin, Muchtaridi Muchtaridi

Email(s): winasih.rachmawati@bku.ac.id , aliya.n.hasanah@unpad.ac.id , fauzanzein@bku.ac.id , muchtaridi@unpad.ac.id

DOI: 10.52711/0974-360X.2022.00614   

Address: Winasih Rachmawati1,2, Aliya Nur Hasanah1, Fauzan Zein Muttaqin2, Muchtaridi Muchtaridi1*
1Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.
2Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 8,     Year - 2022


ABSTRACT:
a-mangostin is the largest content in Garcinia mangostana rind, which has a wide range of biological activities and pharmacological properties. The extraction process to separate a-mangostin from complex matrices requires selectivity. A novel method of molecularly imprinted polymer (MIP) has characterization high selectivity, high stability, and low cost. MIP uses as a selective sorbent with adsorption method that a-mangostin has the higher binding capacity and specific recognition with MIP. The computational approach was developed to study monomer selectivity towards a-mangostin as a template for rational MIP design. The purpose of this research is to study molecular interaction between template and monomer and monomer template ratio optimization in computational design to find the best pre-polymerization complex for MIP preparations. The structure of a-mangostin and nine functional monomers was drawn using Marvin Sketch and then optimized by Hyperchem 8.0.10 software. Monomer positions are placed on the template structure in various complex ratios. Each conformation was calculated using a semi-empirical PM3 simulation method to obtain the lowest bond free energy. The results showed that the a-mangostin-methacrylic acid complex with 1:6 molar ratio had the most stable structure, the most hydrogen bonds, and the highest ?G was -27.5114588 kcal/mol. This study presented a method of selecting numerous functional monomers and determining appropriate monomer ratios with a template to obtain MIP for a-mangostin.


Cite this article:
Winasih Rachmawati, Aliya Nur Hasanah, Fauzan Zein Muttaqin, Muchtaridi Muchtaridi. Computational Design for The Development of Monomer Selectivity to α-Mangostin in Molecularly Imprinted Polymer. Research Journal of Pharmacy and Technology. 2022; 15(8):3663-8. doi: 10.52711/0974-360X.2022.00614

Cite(Electronic):
Winasih Rachmawati, Aliya Nur Hasanah, Fauzan Zein Muttaqin, Muchtaridi Muchtaridi. Computational Design for The Development of Monomer Selectivity to α-Mangostin in Molecularly Imprinted Polymer. Research Journal of Pharmacy and Technology. 2022; 15(8):3663-8. doi: 10.52711/0974-360X.2022.00614   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-56


REFERENCES:
1.    Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology. 2017; 109: 102-122. doi:https://doi.org/10.1016/j.fct.2017.08.021
2.    Muchtaridi M, Wijaya CA. Anticancer potential of α-mangostin. Asian J Pharm Clin Res. 2017; 10(12): 440-445.
3.    Amnuaikit T, Phadungkarn T, Wattanapiromsakul C, Boonme P. Formulation development of antibacterial films containing mangosteen peel extract. Research J Pharm and Tech. 2012; 5(8): 1058-1065.
4.    Herrera-Aco DR, Medina-Campos ON, Pedraza-Chaverri J, Sciutto-Conde E, Rosas-Salgado G, Fragoso-González G. Alpha-mangostin: Anti-inflammatory and antioxidant effects on established collagen-induced arthritis in DBA/1J mice. Food Chem Toxicol. 2019;124: 300-315. doi:10.1016/j.fct.2018.12.018
5.    Lim Chiew  V, Sasikala C, Mogana R. Antioxidant activity of Garcinia mangostana L and alpha mangostin: A Review. Research J Pharm and Tech. 2021; 14(8): 4466-0.
6.    Lee CH, Ying TH, Chiou HL, et al. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget. Jul 18 2017; 8(29): 47425-47439. doi:10.18632/oncotarget.17659
7.    Lee HN, Jang HY, Kim HJ, et al. Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.)in YD-15 tongue mucoepidermoid carcinoma cells. Int J Mol Med. Apr 2016;37(4):939-48. doi:10.3892/ijmm.2016.2517
8.    Mahmudah R, Adnyana IK, Sukandar EY. Pharmacological effects of Garcinia mangostana L.: an update review. Research J. Pharm. and Tech. 2020; 13(11): 5471-5476. doi: 10.5958/0974-360X.2020.00955.5
9.    Warditiani NK, Astuti KW, Armita Sari PMN, Gelgel Wirasuta IMA. Antidyslipidemic activity of methanol, ethanol and ethyl acetate mangosteen rind (Garcinia mangostana L). Research J Pharm and Tech. 2020; 13(1): 261-264.
10.    Mohan S, Syam S, Abdelwahab SI, Thangavel N. An anti-inflammatory molecular mechanism of action of α-mangostin, the major xanthone from the pericarp of Garcinia mangostana: an in silico, in vitro and in vivo approach. Food Funct. Jul 17 2018; 9(7): 3860-3871. doi:10.1039/c8fo00439k
11.    Herdiana Y, Handaresta DF, Joni IM, Wathoni N, Muchtaridi M. Synthesis of nano-α mangostin based on chitosan and Eudragit S 100. J Adv Pharm Technol Res. Jul-Sep 2020; 11(3): 95-100. doi:10.4103/japtr.JAPTR_182_19
12.    Mardianingrum R, Yusuf M, Hariono M, Mohd Gazzali A, Muchtaridi M. α-Mangostin and its derivatives against estrogen receptor alpha. J Biomol Struct Dyn. Nov 6 2020: 1-14. doi:10.1080/07391102.2020.1841031
13.    Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A. Alpha-Mangostin rich extracts from mangosteen pericarp: optimization of green extraction protocol and evaluation of biological activity. Molecules. Jul 25 2018; 23(8) doi:10.3390/molecules23081852
14.    Chhouk K, Quitain AT, Gaspillo P-aD, et al. Supercritical carbon dioxide-mediated hydrothermal extraction of bioactive compounds from Garcinia Mangostana pericarp. The Journal of Supercritical Fluids. 2016/04/01/ 2016; 110:167-175. doi:https://doi.org/10.1016/j.supflu.2015.11.016
15.    Mohammad NA, Abang Zaidel DN, Muhamad II, Abdul Hamid M, Yaakob H, Mohd Jusoh YM. Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction. Heliyon. 2019/10/01/ 2019; 5(10): e02571. doi:https://doi.org/10.1016/j.heliyon.2019.e02571
16.    Zhao Y, Tang G, Tang Q, et al. A method of effectively improved α-mangostin bioavailability. Eur J Drug Metab Pharmacokinet. Oct 2016; 41(5): 605-13. doi:10.1007/s13318-015-0283-4
17.    Vasapollo G, Sole RD, Mergola L, et al. Molecularly imprinted polymers: present and future prospective. International journal of molecular sciences. 2011; 12(9): 5908-5945. doi:10.3390/ijms12095908
18.    Tang Z, He C, Tian H, et al. Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science. 2016/09/01/ 2016; 60: 86-128. doi:https://doi.org/10.1016/j.progpolymsci.2016.05.005
19.    Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors - A review. Anal Chim Acta. Sep 14 2016; 936: 62-74. doi:10.1016/j.aca.2016.07.027
20.    Shaikh Siraj N, Jayesh CC, Khan GJ, Makrani Shaharukh I, Sandip SK, Magan GV. Olden times of computers in pharmaceutical research and development: a brief review. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(2): 109-112.
21.    Nangare SA, Rohane SH. Review on Guassion. The general purpose in computational chemistry for medicinal chemistry. Asian J Research Chem. 2021; 14(1): 89-91.
22.    Patil NS, Rohane SH. Organization of Swiss Dock: in study of computational and molecular docking study. Asian J Research Chem. 2021; 14(2): 145-148.
23.    Nicholls IA, Chavan S, Golker K, et al. Theoretical and computational strategies for the study of the molecular imprinting process and polymer performance. Adv Biochem Eng Biotechnol. 2015; 150: 25-50. doi:10.1007/10_2015_318
24.    Krishnan H, Islam AS, Hamzah Z, Nadaraja P, Ahmad MN. A novel molecular imprint polymer synthesis for solid phase extraction of andrographolide. Indonesian Journal of Chemistry. 2019;19(1):219-230.
25.    Bhawsar J, Jain PK, Jain P, Bhawsar MR. Computational study of corrosion potential of ciprofloxacin drug: DFT approach. Asian J Research Chem. 2014; 7: 386-389.
26.    Marvinsketch. Marvin sketch 2014. Accessed 20/11/2018, 2018. https://chemaxon.com/products/marvin
27.    HyperChem. Hyperchem(TM) Professional 8.0. Hypercube, Inc. Accessed 10/11/2018, 2018. http://www.hypercubeusa.com/
28.    Otuokere IE, Alisa CO. Computational study on molecular orbital’s, excited state properties and geometry optimization of anti-benign prostatic hyperplasia drug, N- (1,1-dimethylethyl)-3-oxo-(5α,17β)-4-azaandrost-1-ene-17-carboxamide (Finasteride). Asian J. Res. Pharm. Sci. 2014; 4(4): 169-173.
29.    Yunta MJR. How to Calculate Binding Constants for Drug Discovery Studies. American Journal of Modeling and Optimization. 2013; 1(3): 61-70.
30.    Venkatesh K, Aravinda P. Application of Molecular Descriptors in Modern Computational Drug Design –An Overview. Research J Pharm and Tech. 2017; 10(9): 3237-3241.
31.    Yan H, Row KH. Characteristic and synthetic approach of molecularly imprinted polymer. International Journal of Molecular Sciences. 2006; 7(5): 155-178.
32.    Song X, Wang J, Zhu J. Effect of porogenic solvent on selective performance of molecularly imprinted polymer for quercetin. Materials Research. 2009; 12(3): 299-304.
33.    Perlstein J. The weak hydrogen bond in structural chemistry and biology (International Union of Crystallography, Monographs on Crystallography, 9) By Gautam R. Desiraju (University of Hyderabad) and Thomas Steiner (Freie Universität Berlin). Oxford University Press:  Oxford and New York. 1999. xiv + 507 pp. $150. ISBN 0-19-850252-4. Journal of the American Chemical Society. 2001/01/01 2001;123(1):191-192. doi:10.1021/ja0047368
34.    Xie L, Xiao N, Li L, Xie X, Li Y. Theoretical Insight into the Interaction between chloramphenicol and functional monomer (methacrylic acid) in molecularly imprinted polymers. International Journal of Molecular Sciences. 2020; 21(11): 4139. doi:10.3390/ijms21114139
35.    Jadhav RP, Kengar MD, Nikam NR, Kumbhar SB, Devkar SB, Bhutkar MARoCFDaA. Review on Computational Fluid Dynamics and Application. Asian J Pharm Res. 2019; 9(4): 263-267.
36.    Karim K, Cowen T, Guerreiro A, Piletska E, Whitcombe M. A Protocol for the Computational Design of High Affinity Molecularly Imprinted Polymer Synthetic Receptor. Glob J Biotechnol Biomater Sci. 2017; 3(1): 001-007. doi:10.17352/gjbbs.000009
37.    Meier F, Schott B, Riedel D, Mizaikoff B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Analytica Chimica Acta. 2012; 744(none), 68-74. doi:10.1016/j.aca.2012.07.020
38.    Saad EM, Madbouly A, Ayoub N, Rasha MEN. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Analytica Chimica Acta. 2015; 877(), 80–89. doi:10.1016/j.aca.2015.03.047

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available