Author(s): Mardiyanto Mardiyanto, Elsa Fitria Apriani, Muhammad Hafizhaldi Alfarizi

Email(s): elsafitria@mipa.unsri.ac.id

DOI: 10.52711/0974-360X.2022.00603   

Address: Mardiyanto Mardiyanto, Elsa Fitria Apriani*, Muhammad Hafizhaldi Alfarizi
Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, South Sumatra, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 8,     Year - 2022


ABSTRACT:
Staphylococcus aureus has been resistant to various antibiotics including erythromycin, clindamycin, penicillin, trimethoprim-sulfamethoxazole, tetracyclines, chloramphenicol, and piperacillin-tazobactam so that an alternative treatment is needed. The purple sweet potato leaves (Ipomoea batatas (L.) Poir) contain flavonoid compounds that have antibacterial activity by inhibiting nucleic acid, protein synthesis, cell membrane, and energy metabolism in bacteria. In this study, ethanolic extract of purple sweet potato leaves is loaded to poly lactic-co-glycolic acid submicroparticles to increase the stability of flavonoids and the antibacterial effect. Submicroparticle gel was prepared with various concentrations of hydroxypropyl methylcellulose ie F1, F2, and F3 respectively 3%, 5%, and 7%. The antibacterial activity of submicroparticles gel compared with a gel containing extracts without submicroparticle and erythromycin gel as a positive control. Phytochemical test results that the ethanolic extract of purple sweet potato leaves contains flavonoids. Based on the research results, the best formula was F1(3%) with pH, homogeneity, viscosity, dispersibility, adhesion, and washability, respectively 7.4±0.0361; homogeneous; 8358.9±228.1391 cps; 4.2667±0.3005cm; 45.333±2.5166 seconds; 11.6667±1.5275mL. F1 was also shown to have strong antibacterial activity with an inhibition zone value of 13.67±4.04mm.


Cite this article:
Mardiyanto Mardiyanto, Elsa Fitria Apriani, Muhammad Hafizhaldi Alfarizi. Formulation and In-vitro Antibacterial Activity of Gel containing Ethanolic extract of Purple Sweet Potato Leaves (Ipomoea batatas (L.) Loaded Poly Lactic Co-Glycolic Acid Submicroparticles against Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022; 15(8):3599-5. doi: 10.52711/0974-360X.2022.00603

Cite(Electronic):
Mardiyanto Mardiyanto, Elsa Fitria Apriani, Muhammad Hafizhaldi Alfarizi. Formulation and In-vitro Antibacterial Activity of Gel containing Ethanolic extract of Purple Sweet Potato Leaves (Ipomoea batatas (L.) Loaded Poly Lactic Co-Glycolic Acid Submicroparticles against Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022; 15(8):3599-5. doi: 10.52711/0974-360X.2022.00603   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-45


REFERENCES:
1.    Che Hamzah AM. Yeo CC. Puah SM. Chua KH. Chew CH. Staphylococcus aureus Infections in Malaysia: A Review of Antimicrobial Resistance and Characteristics of the Clinical Isolates, 1990-2017. Antibiotics (Basel). 2019; 8(3):128. doi:10.3390/antibiotics8030128
2.    Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews. 2017; 41 (3): 430 – 449. doi: 10.1093/femsre/fux007
3.    Bezlon G. Shanmugha SD. Rinu ERE. Design and Stabilization of Natural Antibacterial Compound Allicin against Methicillin-Resistant Staphylococcus Aureus for Treatment as a Novel Antibiotic. Research J. Engineering and Tech. 2013; 4(4): 179-181.
4.    Pochapski MT. Fosquiera EC. Esmerino LA. dos Santos EB. Farago PV. Santos FA. Groppo FC. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacognosy Magazine. 2011; 7 (26): 165-170. doi: 10.4103/0973-1296.80682
5.    Osuntokun OT. Babantude Y. Oledale MA. Fasila O. Components and bioactivity of Ipomoea batatas (L.) (Sweet Potato) ethanolic leaf extract. Asian Journal of Advanced Research and Reports. 2020; 10 (1): 10-26. doi:10.9734/AJARR/2020/v10i/130232
6.    Kusuma SAF. Wahyuni UT. Zuhrotun A. Evaluation of Antibacterial Activity of Indonesian Varieties Sweet Potato Leaves Extract from Cilembu Against Shigella Dysenteriae Atcc 13313. Asian J Pharm Clin Res. 2017; 10 (2): 377-380. doi:10.22159/ajpcr.2017v10i2.15773
7.    Manvar MN. Antibacterial Activity of Leaves and Flowers of Ipomoea aquatica Forsk. (Convolvulacea). Asian J. Pharm. Res. 2018; 8(2): 94-98. doi: 10.5958/2231-5691.2018.00016.3
8.    Patil SD. Hafizur MA. Priti A. Shelke PB. Yardi S. Synthesis and evaluation of novel Flavonoid derivatives for Antibacterial activity. Asian J. Pharm. Res. 2016; 6 (1): 27-30. doi: 10.5958/2231-5691.2016.00005.8
9.    Dzoyem JP. Hamamoto H. Ngameni B. Ngadjui BT. Sekimizu K. Antimcrobial action mechanism of flavonoids from Dorstenia species. Drug Discoveries & Therapeutics. 2013; 7 (2): 66-72. doi: 10.5582/ddt.2013.v7.2.66
10.    Takashi K. Yoshinobu T. Takahisa N. Takashi N. Hiroshi T. Shigetaka O. Acceptor specificity of cyclodextrin glucanotransferase from an alkalophilic Bacillus species and synthesis of glycosyl rhamnose. Bioscience, Biotechnology, and Biochemistry. 1996; 60 (7): 1176-1178. doi: 10.1271/bbb.60.1176
11.    Pourcel L. Routaboul JM. Cheynier V. Lepiniec L. Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science. 2007; 12 (1): 29-36. doi:10.1016/j.tplants.2006.11.006
12.    Zulham G. Wilar Y. Susilawati A. Subarnas AY. Chaerunisaa. Microparticles of Herbal Extracts with Antioxidant Activity. Pharmacog J. 2021; 13 (1): 285-295. doi: 10.5530/pj.2021.13.38
13.    Sehar S. Khan AIH. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2):128-131. doi: 10.52711/2231-5691.2021.00024
14.    Buzea C. Blandino IIP. Robbie K. Nanomaterial and nanoparticles: sources and toxicity. Biointerphase. 2007; 2: 170-172. doi: 10.1116/1.2815690
15.    Somayadineshraj D. Shanmugapriyan R. Lakshmanaswamy R. Nishiha CS. Dooslin MBV. Muralidharan P. Synthesis and Characterization of MgO nanoparticles Coated by polyvinyl alcohol for Biomedical applications. Research J. Pharm. and Tech. 2018; 11(11): 4997-5000. doi: 10.5958/0974-360X.2018.00911.3
16.    Chetan MP. Manan AP. Nikhil PP. Prajapati PH. Patel CN. Poly Lactic Glycolic Acid (PLGA) As Biodegradable Polymer. Research J. Pharm. and Tech. 2020: 3(2): 353-360.
17.    Irfan M. Saiyyad DS. Bhambere, Sanjay K. Formulation and Optimization of Silymarin Loaded PLGA Nanoparticle for liver targeting. Asian J. Pharm. Tech. 2017; 7 (4): 209-220. doi: 10.5958/2231-5713.2017.00032.0
18.    Verma A. Singh VS. Kaur R. Jain UK. Formulation and Evaluation of Clobetasol Propionate Gel. Asian Journal of Pharmaceutical and Clinical Research. 2013; 6 (5): 15-18. ISSN - 0974-2441
19.    Rowe RC. Sheskey PJ. Quinn ME. Handbook of pharmaceutical excipients, Sixth Edition. UK, London: Pharmaceutical Press and American Pharmacists Association; 2009.
20.    Ghosal K. and Nanda A. Development of diclofenac potassium gel from hydrophobically modified HPMC. Iranian Polymer Journal. 2013; 22 (6): 1-24. doi: 10.1007/s13726-013-0145-3
21.    Binder L. Mazal J. Petz R. Klang V. Valenta C.  The role of viscosity on skin penetration from cellulose ether-based hydrogels. Skin Research and Technology. 2019; 25 (5): 725-734. doi: 10.1111/srt.12709
22.    Indarti K. Apriani EF. Wibowo AE. Simanjuntak P. Antioxidant Activity of Ethanolic Extract and Various Fractions from Green Tea (Camellia sinensis L.) Leaves. Pharmacognosy Journal. 2019; 11 (4): 771-776. doi: 10.5530/pj.2019.11.122
23.    Mardiyanto. Investigation of nanoparticulate formulation intended for caffeine delivery into hair follicle. Dissertation. Department of Pharmacy, Faculty of Science, Saarland University, Saarbruecken. Germany; 2013.
24.    Apriani EF. Rosana Y. Iskandarsyah I. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne. J Adv Pharm Technol Res. 2019; 10 (2): 75-80. doi: 10.4103/japtr.JAPTR_289_18
25.    Ahmad I. Owais M. Shahid M. Aqil F. Combating Fungal Infections New York, USA : Springer; 2010.
26.    Kim HJ. Jin C. Lee YS. Isolation and Antioxidative Activities of Caffeoylquinic Acid Derivates and Flavonoid Gycosides from Leaves of Sweet Potato (Ipomoea batatas L.). The Journal of Applied Pharmacology. 2007; 15: 46-51. doi: 10.4062/biomolther.2007.15.1.046
27.    Islam MM. Akter S. Al-Amin M. Haque MM. Isolation of Quercetin-3-O-beta-d glucopyranoside from the Leaves of Azadirachta Indica and Antimicrobial and Cytotoxic screening of the Crude Extracts. Dhaka University Journal of Science. 2012; 60 (1): 11-14. doi:10.3329/dujs.v60i1.10328
28.    Sholkamy EN. Ahmed MS. Yasser MM. Mostafa AA. Antimicrobial quercetin 3-O-glucoside derivative isolated from Streptomyces antibioticus strain ess_amA8. Journal of King Saud University. 2020; 32 (3): 1838-1844. doi: 10.1016/j.jksus.2020.01.026
29.    Wang W. Sun C. Mao L. Ma P. Liu F. Yang J. Gao Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology. 2016; 56: 21-38. doi: 10.1016/j.tifs.2016.07.004
30.    Cunico LP. Cobo AM. Al-Hamimi S. Turner C. Solubility and Thermal Degradation of Quercetin in CO2-Expanded Liquids. Molecules. 2020; 25: 5582-5591.  doi: 10.3390/molecules25235582
31.    Lagreca E. Onesto V. Natale CD. Manna SL. Netti PA. Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Progress in Biomaterials. 2020; 9: 153–174. doi: 10.1007/s40204-020-00139-y
32.    Stromberg ZR. Phipps ML. Magurudeniya HD. Pedersen CA. Rajale T. Sheehan CJ. Courtney SJ. Bradfute SB. Hraber P. Rush MN. Kubicek-Sutherland JZ. Martinez JS. Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. International Journal of Pharmaceutics. 2021; 597: 1-11. doi: 10.1016/j.ijpharm.2021.120340
33.    Wiśniewska M. Chibowski S. Urban T. Effect of the type of polymer functional groups on the structure of its film formed on the alumina surface—suspension stability. React Funct Polym. 2012; 72: 791–798. doi: 10.1016/j.reactfunctpolym.2012.08.005
34.    Sharma N. Madan P. Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian journal of pharmaceutical sciences. 2016; 11 (3): 404-416. doi: 10.1016/j.ajps.2015.09.004
35.    Zolnik BS. Burgess DJ. Effect of Acidic pH on PLGA Microsphere Degradation and Release. Journal of Controlled Release. 2007; 122: 338-344. doi: 10.1016/j.jconrel.2007.05.034
36.    Das N. Bose C. Tripathi N. Maitra S. Progress in the development of gelling agents for improved culturability of microorganisms. Frontiers in Microbiology. 2015; 6 (698): 1-7. doi: 10.3389/fmicb.2015.00698
37.    Pacharne PS. Patil JR Chaudhari SP. Ratnaparkhi MP. Design, Development and formulation of Topical anti arthritic gel using different gelling agents. Elixir Pharmacy. 2013; 62: 17599-17603.
38.    Yener G. Dal O. Üner M. Effect of Vehicles on Release of Meloxicam from Various Topical Formulations. The Open Drug Delivery Journal. 2009; 3: 19-23. doi: 10.2174/1874126600903010019
39.    Jednacak T. Mikulandra I. Novak P. Advanced Methods for Studying Structure and Interactions of Macrolide Antibiotics. International Journal of Molecular Sciences. 2020; 21 (7799): 1 – 26.  doi: 10.3390/ijms21207799
40.    Singh RK. Garg R. Formulation and Evaluation of Erythromycin Estolate Loaded Drug Balls. Research J. Pharm. and Tech. 2020; 13(1): 282-286 doi: 10.5958/0974-360X.2020.00057.8
41.    Mohanraj VJ. Chen Y. Nanoparticles-A review. Trop J Pharm Res. 2006; 5(1): 561-573. doi: 10.4314/tjpr.v5i1.14634
42.    Fredenberg S. Wahlgren M. Reslow M. Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems-A review. International Journal of Pharmaceutics. 2011; 415 (2011): 34-52. doi: 10.1016/j.ijpharm.2011.05.049.
43.    Vimal P. Bhavesh A. Anand D. Manish G. Adil P. A Review on Long Acting PLGA Based in Situ Forming Microparticles Formulation for a Novel Drug Delivery System. Res. J. Pharm. Dosage Form. and Tech. 2016; 8(2):127-134. doi: 10.5958/0975-4377.2016.00017.3
44.    Hakue T. Talukder MMU. Chemical Enhancer: A simplisitic way to modulate barrier function of the stratum corneum.  Adv. Pharm. Bull. 2018; 8 (2):169-179. doi: 10.15171/apb.2018.021
45.    Vinod K. Aditi S. Study of Antimicrobial activity of Star Anise loaded poly (DL-lactide-co-glycolide) nanoparticles. Research J. Pharm. and Tech. 2019; 12 (2): 499-507. doi: 10.5958/0974-360X.2019.00088.X
46.    Vinod K. Aditi S. Synthesis, Characterization, Antimicrobial activity and Release Study of Cinnamon loaded poly (DL-lactide-co-glycolide) Nanoparticles. Research J. Pharm. and Tech. 2019; 12(4):1529-1535. doi: 10.5958/0974-360X.2019.00253.1

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available