Author(s):
Amr A. El-Waseif, Ghada S. Abd El-Ghani, Sabah A. Abo El maaty, Mervat G. Hassan
Email(s):
amrelwaseif@azhar.edu.eg
DOI:
10.52711/0974-360X.2022.00561
Address:
Amr A. El-Waseif1, Ghada S. Abd El-Ghani2, Sabah A. Abo El maaty2, Mervat G. Hassan2
1Botany and Microbiology Dept., Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
2Botany and Microbiology Dept., Faculty of Science, Banha University, Egypt.
*Corresponding Author
Published In:
Volume - 15,
Issue - 8,
Year - 2022
ABSTRACT:
The fungal pathogens considered the major human opportunistic, 50–60% of candidiasis cases patients Candida albicans. Green synthesis of AgNPs from NaNO3 using Curcuma extract was performed. UV–Vis spectrophotometry and TEM characterization were measured. AgNPs absorption peak showed between 420-440 nm and results of TEM observed, the AgNPs has a uniform regular coccus shape and size of AgNPs was ranging from 50 to 12nm with average 37nm. The activity of AgNPs as antifungal agent against Candida albicans was determined using agar well diffusion method. AgNPs showed greater antifungal activity with inhibition zone diameter 28mm at 30µg/ml. The antibiofilm activity of AgNPs was assayed in 96-well polystyrene plates and 3 ml polyethylene tube. Obviously, remarkable progressive inhibition of biofilm formation was noticed with increasing of AgNPs concentrations. Determination of AgNPs cytotoxicity on normal lung fibroblast (WI-38) cells using MTT protocol was performed. The viability observed at concentration 31.25 was 44% with IC50 value 30.5µg ml-1. When Curcuma AgNPs are used to local infected wound, may inhibit Candida cells without bad side effect on host cells surrounding the infected wounds.
Cite this article:
Amr A. El-Waseif, Ghada S. Abd El-Ghani, Sabah A. Abo El maaty, Mervat G. Hassan. Cytotoxicity and Promising Anti-Biofilm of Curcuma Silver Nanoparticles against Candida albicans. Research Journal of Pharmacy and Technology. 2022; 15(8):3355-9. doi: 10.52711/0974-360X.2022.00561
Cite(Electronic):
Amr A. El-Waseif, Ghada S. Abd El-Ghani, Sabah A. Abo El maaty, Mervat G. Hassan. Cytotoxicity and Promising Anti-Biofilm of Curcuma Silver Nanoparticles against Candida albicans. Research Journal of Pharmacy and Technology. 2022; 15(8):3355-9. doi: 10.52711/0974-360X.2022.00561 Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-3
REFERENCES:
1. Pfaller M. Diekema D. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20(1): 133-63.
2. Netea M. Joosten L. Meer J. Kullberg B. Veerdonk L. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015; 15(10): 630-42.
3. Perlin D. Current perspectives on echinocandin class drugs. Future Microbiol. 2011; 6(4): 441-57.
4. Shrestha S. Fosso M. Garneau-Tsodikova S. A combination approach to treating fungal infections. Sci Rep. 2015; 5: 170-80.
5. Biao L. Tan S. Wang Y. Guo X. Fu Y. Xu F. Zu Y. Liu Z. Mater. Sci. Eng. C, 2017; 76: 73–80.
6. Manimaran T. Sudhakar T. Nanda A. Amin M. Varghese A. Biosynthesis of Green Nanoparticles from Occimum sanctum and their Characterization. Research J. Pharm. and Tech. 2016; 9(4): 397-400.
7. Arya G. Kumari R. Gupta N. Kumar A. Chandra R. Nimesh S. Artif. Cells, Nanomed., Biotechnol., 2018; 46: 985– 993.
8. Sanjay B. Changmai N. Biological Materials Assisted Synthesis of Silver Nanoparticles and Potential Applications: A Review. Research J. Pharm. and Tech 2018; 11(6): 2681-2694.
9. Rold´an A. Salinas-Garcia J. Alguacil M. Caravaca F. Appl. Soil Ecol. 2005; 30: 11–20.
10. Meghana J. Anitha R. Rajeshkumar S. Lakshmi T. Characterisation of Cumin oil mediated silver nanoparticles using UV-visible spectrophotometer and TEM. Research J. Pharm. and Tech. 2019; 12(10):4931-4933.
11. Zhou Y. Kong Y. Kundu S. et al Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guérin. J Nanobiotechnol. 2012; 10:19.
12. Santhosh S. Chandrasekar M. Kaviarasan. P. Deepak T. Silambarasan B. Gayathri D. Chemical Composition, Antibacterial, Anti-oxidant and Cytotoxic properties of Green Synthesized Silver Nanoparticles from Annona muricata L. (Annonaceae).Research J. Pharm. and Tech. 2020; 13(1):33-39.
13. Desireddy A. Conn B. Guo J. et al., Ultrastable silver nanoparticles. Nature. 2013; 501:399- 402.
14. Isha G. Green synthesis and Characterization of Silver Nanoparticles with Rhizome extract of Curcuma longa (AgNPs-RECL) for Antimicrobial activity towards Xanthomonas and Erwinia species. Research J. Pharm. and Tech. 2021; 14(1):325-330.
15. Foldbjerg R. Dang D. Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011; 85: 743–750.
16. Grunkemeier G. Jin R. Im K et al Time-related risk of the St. Jude Silzone heart valve. Eur J Cardio-Thoracic Surg. 2006; 30:20–27.
17. Mun S-H. Joung K. Kim Y-SY-C. et al Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013; 20:714–718.
18. Zandi K. Ramedani E. Mohammadi K et al Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Nat Prod Commun. 2010; 5:1935–1938.
19. Jurenka J. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 2009; 14:141–153.
20. Packiavathy I. Priya S. Pandian S. Ravi A. Inhibition of biofilm development of uropathogens by curcumin—an anti-quorum sensing agent from Curcuma longa. Food Chem 2014; 148:453–460.
21. Naksuriya O. Okonogi S. Schiffelers R. Hennink W. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014; 35:3365–3383.
22. Wang Y. Pan M. Cheng A. et al., Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997; 15:1867–1876.
23. Shameli K. Ahmad M. Shabanzadeh P. et al., Effect of Curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Res Chem Intermed. 2014; 40:1313 1325.
24. Yang X. Li C. Huang C. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016; 8:3040–3048.
25. El-Ghwas D. El-Waseif A. The Synthesis of Silver Nanoparticals from Streptomyces sp. with Antimicrobial Activity. International Journal of PharmTech Research. 2016; 9(4): 179-186.
26. Lee K. Lee J. Ryu S. Cho M. Lee J. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog. Dis. 2014; 11: 710–717.
27. Pour N. Dusane D. Dhakephalkar P. Zamin F. Zinjarde S. Chopade B. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 2011; 62: 328–338.
28. Senthilraja P. Kathiresan K. In vitro cytotoxicity MTT assay in Vero, HepG2 andMCF-7 cell lines study of marine yeast. J Appl Pharm Sci; 2015; 5:80–84.
29. Jaiswal S. Mishra P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med Microbiol Immunol. 2018; 207:39–53.
30. Franci G. Falanga A. Galdiero S. Palomba L. Rai M. Morelli G. Galdiero M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015; 20: 8856–8874.
31. Sangeeta S. Tanavade S. Naikwade N. Dhanyakumar D. In vitro anticancer activity of Ethanolic and Aqueous Extracts of Peristrophe bivalvis Merrill. Research J. Pharm. and Tech. 2012; 5(10): 1324-1327.
32. Naveen B. Padmesh TVN. Common Duckweed (Lemna minor) Assisted Green Synthesis of Silver Nanoparticles as Potent Anti-Fungal Nanomaterial. Research J. Pharm. and Tech. t. 2014; 7(9): 955-958.
33. Wong K. Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine ? Medchemcomm. 2010; 1:125–129.
34. Maytham M. Antibacterial Activities and effects of Silver Nanoparticles. Research J. Pharm. and Tech 2018; 11(9): 4126-4128.
35. Sahariah P. Jensen K. Thygesen M. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem Commun. 2015; 51:5–8.
36. Rathi M. Meenakshi P. Guru Kumar D. Arul Raj C. Sunitha M. Gopalakrishnan V. Leaves of Spermacoce hispida as a Novel Cancer Therapeutic – An In Vitro Study. Research J. Pharm. and Tech. 2011; 4(8): 1288-1291.
37. Kaniz F. Chowdhury A. Diba F. Rahman K. Habib R. Hamid K. Evaluation of Antioxidant and Cytotoxic Potential of Different Extracts from the Leaves of Aegle marmelos L. Research J. Pharm. and Tech. 2013;6(4): 384-387.