Author(s):
Yeamy Agustina Marpaung, Trimurni Abidin, Syafruddin Ilyas, Irwana Nainggolan, Basri A. Gani
Email(s):
tri.murni@usu.ac.id and , basriunoe@unsyiah.ac.id
DOI:
10.52711/0974-360X.2022.00583
Address:
Yeamy Agustina Marpaung1, Trimurni Abidin1*, Syafruddin Ilyas2, Irwana Nainggolan3, Basri A. Gani4*
1Department of Dentistry Conservative, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.
2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.
3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.
4Department of Oral Biology, Faculty of Dentistry, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh Indonesia.
*Corresponding Author
Published In:
Volume - 15,
Issue - 8,
Year - 2022
ABSTRACT:
Pulpitis can cause sensitivity and trigger endodontic infections that threaten to lose dentin. Nacre and Biodentine were reported as a stimulator of TGF-ß1 expression to induce tertiary dentin formation. To evaluate the ability of Nacre and Biodentine in inducing the TGF-ß1 expression of tertiary dentin formation. Thirty male Wistar rats (Rattus Novregicus) were divided into three groups. Haemotoxylin and Eosin staining observed the dentinal bridge formation while TGF-ß1 expression was evaluated by immunohistochemistry. Quantitative data were obtained based on the staining score. Kruskal-Wallis tests were used for statistical analysis. Nacre contains Calcium (95.04%), Oxygen (4.96%), and Carbon (0%). The dentin bridge formed after induced by Nacre and Biodentine was significant (p<0.05). Biodentine is stronger in reducing dentin bridges than Nacre in the hard tissue formed of the initial dentinal bridge and complete dentin bridges. The Quantity level expression of TGF-ß1 of dentine is higher than that influenced by Biodentine compared to the Nacre of all score categories. They are significant among the treatment of 7 days, 14 days, and 30 days (p<0.05). Nacre and Biodentine can support the healing of reversible pulpitis of Rattus novregicus, which is indicated by an increase in TGF-ß1 expression in inducing the dentinal bridge formation of 7, 14, and 30 days.
Cite this article:
Yeamy Agustina Marpaung, Trimurni Abidin, Syafruddin Ilyas, Irwana Nainggolan, Basri A. Gani. Role of Nacre and Biodentine to Inducing the TGF-β1 in the Dentin Tertiary Formation on the Pulpitis Reversible of Rattus norvegicus. Research Journal of Pharmacy and Technology. 2022; 15(8):3479-4. doi: 10.52711/0974-360X.2022.00583
Cite(Electronic):
Yeamy Agustina Marpaung, Trimurni Abidin, Syafruddin Ilyas, Irwana Nainggolan, Basri A. Gani. Role of Nacre and Biodentine to Inducing the TGF-β1 in the Dentin Tertiary Formation on the Pulpitis Reversible of Rattus norvegicus. Research Journal of Pharmacy and Technology. 2022; 15(8):3479-4. doi: 10.52711/0974-360X.2022.00583 Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-8-25
REFERENCES:
1. Rechenberg D-K, Galicia JC, Peters OA. Biological markers for pulpal inflammation: a systematic review. PloS One. 2016;11(11). doi.org/10.1371/journal.pone.0167289
2. Asgary S, Ahmadyar M. Vital pulp therapy using calcium-enriched mixture: An evidence-based review. Journal of Conservative Dentistry: JCD. 2013;16(2):92. doi.org/10.4103%2F0972-0707.108173
3. Gayathri M. Light Microscopic Changes in Pulp due to Dental Caries at Different Stages. Research Journal of Pharmacy and Technology. 2015; 8(7): 935-936. doi.org/10.5958/0974-360X.2015.00156.0
4. Magne D, Bluteau G, Lopez-Cazaux S, et al. Development of an odontoblast in vitro model to study dentin mineralization. Connective Tissue Research. 2004;45(2):101-08. doi.org/10.1080/03008200490464839
5. Jalan AL, Warhadpande MM, Dakshindas DM. A comparison of human dental pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents. Journal of Conservative Dentistry: JCD. 2017;20(2):129. doi.org/10.4103/0972-0707.212247
6. Mamaladze MT, Ustiashvili MG. Theoretical and practical principles of dentinogenesis: hypotheses and confirmed clinically reality]. Georgian Med News. 2010(186):22-8.
7. Rajput D, Verma A, Qureshi A, Singh S, Yadav B, Manikpuri ND, Daniel S, Sahu PK, Rajgopal B et al. , Evaluation of Stability Parameters for Calcium Carbonate Antacid Suspension using Different Concentrations of Suspending Agents. Research Journal of Pharmacy and Technology. 2014; 7(9): 999-1003.
8. Nagaraju KA, Devaraju, B M. Mechanical Characterization of Al 6061 Surface Composite with Nano particles (TiC) Fabricated by Friction Stir Processing. Research Journal of Engineering and Technology. 2018;9(4): 288-292. doi.org/10.5958/2321-581X.2018.00038.7
9. Yogita R. Indalkar, Nayana V. Pimpodkar, Puja S. Gaikwad, Godase AS. A Comprehensive Review on Biodegradable Polymers. Asian Journal of Research in Pharmaceutical Sciences. 2016; 6(2): 65-76. doi.org/10.5958/2231-5659.2016.00010.2
10. About I. Biodentine: from biochemical and bioactive properties to clinical applications. Giornale Italiano di Endodonzia. 2016;30(2):81-88. doi.org/10.1016/j.gien.2016.09.002
11. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. British Journal of Pharmacology. 2010;160(7):1577-9. doi.org/10.1111/j.1476-5381.2010.00872.x
12. Suja C, Senthil SL, Jeyatha B, Ponmalar J, Mary K. First characterization report of natural pearl of Pinctada fucata from Gulf of Mannar. Biotechnology Research and Innovation. 2018;2(1):58-62. doi.org/10.1016/J.BIORI.2017.11.002
13. He Y, Gan Y, Lu J, et al. Pulpal tissue inflammatory reactions after experimental pulpal exposure in mice. Journal of Endodontics. 2017;43(1):90-95. doi.org/10.1016/j.joen.2016.09.003
14. Careddu R, Duncan H. How does the pulpal response to Biodentine and ProRoot mineral trioxide aggregate compare in the laboratory and clinic? British Dental Journal. 2018;225(8):743. doi.org/10.1038/sj.bdj.2018.864
15. M. Gayathri, K. R. Don. Prevalence of Odontogenic Cysts - A Retrospective Clinico-Pathological Study. Research Journal of Science and Technology. 2017; 9(2): 259-266. doi.org/10.5958/2349-2988.2017.00047.X
16. Chisini LA, conde MCM, alcázar JCB, et al. Immunohistochemical Expression of TGF-β1 and Osteonectin in engineered and Ca (OH) 2-repaired human pulp tissues. Brazilian Oral Research. 2016;30(1) e93. doi.org/10.1590/1807-3107bor-2016.vol30.0093
17. Salkın H, Gönen ZB, Ergen E, Bahar D, Çetin M. Effects of TGF-β1 overexpression on biological characteristics of human dental pulp-derived mesenchymal stromal cells. International Journal of Stem Cells. 2019;12(1):170. doi.org/10.15283/ijsc18051
18. Samuel AR, Jeyaraj G. Study of variation of Pulpal morphology by transparent tooth model system. Research Journal of Pharmacy and Technology. 2015; 8(8): 1163-1166. doi.org/10.5958/0974-360X.2015.00210.3
19. Piattelli A, Rubini C, Fioroni M, Tripodi D, Strocchi R. Transforming growth factor-beta 1 (TGF-beta 1) expression in normal healthy pulps and in those with irreversible pulpitis. International Endodontic Journal.2004 Feb;37(2):114-9. doi.org/10.1111/j.0143-2885.2004.00758.x
20. Tran XV, Salehi H, Truong MT, et al. Reparative mineralized tissue characterization after direct pulp capping with calcium-silicate-based cements. Materials. 2019;12(13):2102. doi.org/10.3390/ma12132102
21. Song M, Yu B, Kim S, et al. Clinical and molecular perspectives of reparative dentin formation: Lessons learned from pulp-capping materials and the emerging roles of calcium. Dental Clinics. 2017;61(1):93-110. doi.org/10.1016/j.cden.2016.08.008
22. Kawashima N, Okiji T. Odontoblasts: Specialized hard‐tissue‐forming cells in the dentin‐pulp complex. Congenital Anomalies. 2016;56(4):144-53. doi.org/10.1111/cga.12169
23. Nowicka A, Łagocka R, Lipski M, et al. Clinical and histological evaluation of direct pulp capping on human pulp tissue using a dentin adhesive system. BioMed Research International. 2016;2016. doi.org/10.1155/2016/2591273
24. Njeh A, Uzunoğlu E, Ardila-Osorio H, et al. Reactionary and reparative dentin formation after pulp capping: Hydrogel vs. Dycal. Evidence-Based Endodontics. 2016;1(1):3. http://evidencebasedendodontics.springeropen.com/articles/10.1186/s41121-016-0003-9
25. Tziafas D, Kodonas K. Dentinogenic specificity in the preclinical evaluation of vital pulp treatment strategies: a critical review. Dentistry Journal. 2015;3(4):133-56. doi.org/10.3390%2Fdj3040133
26. Pooja Umaiyal. M. Awareness of Root Canal Treatment among People. Research Journal of Pharmacy and Technology. 2016; 9(7):779-781. doi.org/10.5958/0974-360X.2016.00149.9
27. Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV. Biodentine used as a pulp-capping agent in primary pig teeth. Pediatric Dentistry. 2012;34(7):202E-08E.
28. Lee CP, Colombo JS, Ayre WN, Sloan AJ, Waddington RJ. Elucidating the cellular actions of demineralized dentine matrix extract on a clonal dental pulp stem cell population in orchestrating dental tissue repair. Journal of Tissue Engineering. 2015;6:2041731415586318. doi.org/10.1177%2F2041731415586318
29. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. Journal of Endodontics. 2016;42(1):47-56. doi.org/10.1016/j.joen.2015.10.019
30. Malkondu Ö, Kazandağ MK, Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. BioMed Research International. 2014;2014. doi.org/10.1155/2014/160951
31. Fujisawa R, Wada Y, Nodasaka Y, Kuboki Y. Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 1996;1292(1):53-60. doi.org/10.1016/0167-4838(95)00190-5
32. Laurent P, Camps J, About I. BiodentineTM induces TGF‐β1 release from human pulp cells and early dental pulp mineralization. International Endodontic Journal. 2012;45(5):439-48. doi.org/10.1111/j.1365-2591.2011.01995.x