Author(s): Heriyannis Homenta, Julyadharma, Yulia Rosa Saharman, Kuntaman Kuntaman, Hani Susianti, Dewi Santosaningsih, Noorhamdani

Email(s): herihomenta@unsrat.ac.id

DOI: 10.52711/0974-360X.2022.00486   

Address: Heriyannis Homenta1,2*, Julyadharma3, Yulia Rosa Saharman4, Kuntaman Kuntaman5, Hani Susianti6, Dewi Santosaningsih7, Noorhamdani7
1Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
2Department of Clinical Microbiology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia.
3Laboratory of Clinical Microbiology, Prof. dr. R. D. Kandou Hospital, Manado, Indonesia.
4Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
5Department of Clinical Microbiology, Faculty of Medicine, Airlangga University/dr. Soetomo Hospital, Surabaya, Indonesia.
6Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya/dr. Saiful Anwar Hospital, Malang, Indonesia.
7Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya/dr. Saiful Anwar Hospital, Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022


ABSTRACT:
Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) is an important pathogenic bacterium that can cause nosocomial infection in hospitalized patients with various manifestations. The purposes of this recent study were to determine the prevalence, antimicrobial susceptibility profiles, carbapenemase-producing phenotypic and genotypic of CRAB in two tertiary care hospitals in Indonesia. Methods: A. baumannii isolates collected from patient’s clinical cultures in two tertiary care hospitals in Malang and Manado were included. Identifications of meropenem-resistant A. baumannii isolates with the vitek2® system results, followed by a sensitivity test using 10 µg imipenem antibiotic disc according to CLSI guidelines to fulfill the criteria as CRAB isolates. We assessed carbapenemase-production using mCIM and eCIM, and determined the presence of blaKPC, blaNDM, blaOXA-23 carbapenemase resistance genes using simplex PCR. Results: 73 CRAB were collected from hospitalized patients, of which 30 CRAB from Manado and 43 CRAB from Malang. The largest number of samples came from sputum and indicates that XDR has also occurred in all CRAB isolates. Carbapenemase-production test using mCIM obtained positive results on 29 samples (96.7%) and 42 samples (97.7%) in Manado and Malang, respectively. The eCIM showed metallo-ß-lactamase was dominant in two tertiary care hospitals. The prevalence of carbapenemase resistance genes was obtained blaOXA-23 and blaNDM ranged between 60% - 90.7% and 3.3% - 4.6%, respectively. blaKPC gene was not detected. Conclusions: We showed that CRAB isolates positive result of carbapenemase-production and carbapenemase resistance genes of blaOXA-23 seem to be dominant in two tertiary care hospitals in Malang and Manado, Indonesia. A national prevention and surveillance system should be prepared to reduce and limiting transmission of CRAB isolates.


Cite this article:
Heriyannis Homenta, Julyadharma, Yulia Rosa Saharman, Kuntaman Kuntaman, Hani Susianti, Dewi Santosaningsih, Noorhamdani. Molecular characterization of Clinical carbapenem-resistant Acinetobacter baumannii isolates from two tertiary care hospitals in Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(7):2917-2. doi: 10.52711/0974-360X.2022.00486

Cite(Electronic):
Heriyannis Homenta, Julyadharma, Yulia Rosa Saharman, Kuntaman Kuntaman, Hani Susianti, Dewi Santosaningsih, Noorhamdani. Molecular characterization of Clinical carbapenem-resistant Acinetobacter baumannii isolates from two tertiary care hospitals in Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(7):2917-2. doi: 10.52711/0974-360X.2022.00486   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-7-8


REFERENCES:
1.    Potron A, et al. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. International Journal of Antimicrobial Agents. 2015; 45 (6): 568-85. doi: 10.1016/j.ijantimicag.2015.03.001.
2.    Moubareck CA, Halat DH. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020; 9 (3): 1-29. doi: 10.3390/antibiotics9030119.
3.    Queenan AM, et al. Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: Results from CAPITAL Surveillance 2010. Diagnostic Microbiology and Infectious Disease. 2012; 73 (3): 267-70. doi: 10.1016/j.diagmicrobio.2012.04.002.
4.    Tawfik DM, et al. The detection of antigenic determinants of Acinetobacter baumannii. Immunology Letters. 2017; 186: 59-67. doi: 10.1016/j.imlet.2017.04.004.
5.    Tjoa E, et al. Acinetobacter baumannii: Role in blood stream infection in Neonatal Unit, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia. International Journal of Microbiology. 2013; 2013: 1-6. doi: 10.1155/2013/180763.
6.    CDC US. Antibiotic resistance threats in the United States, 2019,” Atlanta, Georgia. 2019. doi: 10.15620/cdc:82532.
7.    Manchanda V, et al. Multidrug resistant Acinetobacter. Journal of Global Infectious Diseases. 2010; 2 (3): 291-304. doi: 10.4103/0974-777x.68538.
8.    Poirel L, et al. Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life. 2011; 63 (12): 1061-67. doi: 10.1002/iub.532.
9.    Ramalingam AJ. History of Antibiotics and Evolution of Resistance. Research J. Pharm. and Tech. 8 (12): Dec., 2015; Page 1719-24. doi: 10.5958/0974-360X.2015.00309.1.
10.    Héritier C, et al. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clinical Microbiology and Infection. 2006; 12 (2): 123-30. doi: 10.1111/j.1469-0691.2005.01320.x.
11.    Sun K, et al. Evaluation of six phenotypic methods for the detection of carbapenemases in gram-negative bacteria with characterized resistance mechanisms. Annals of Laboratory Medicine. 2017; 37 (4): 305-12. doi: 10.3343/alm.2017.37.4.305.
12.    Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008; 46 (8): 1254-63.
13.    Evans, BA, et al. (2013). The rise of carbapenem-resistant Acinetobacter baumannii. Current Pharmaceutical Design. 2013; 19: 223-38. doi: 10.2174/1381612811306020223.
14.    El-Shazly S, et al. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. International Journal of Infectious Diseases. 2015; 41: 42-9. doi: 10.1016/j.ijid.2015.10.016.
15.    Al-Hindawi RA, Jarallah EM. Detection of AmpC gene and Some OXA β-lactamase class among Carbapenem Resistant Acinetobacter baumannii (CRAB) isolates in Hilla, Iraq. Research J. Pharm. and Tech 2018; 11 (2):777-84. doi: 10.5958/0974-360X.2018.00147.6
16.    El Bannah AMS, et al. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Care Hospital in Egypt: Clonal Spread of bla OXA-23. Microbial Drug Resistance. 2017; 24 (3): 269-77. doi: 10.1089/mdr.2017.0057.
17.    Doi Y, et al. Acinetobacter baumannii: Evolution of antimicrobial resistance-treatment options. Seminars in Respiratory and Critical Care Medicine. 2015; 36 (01): 85-98. doi: 10.1055/s-0034-1398388.
18.    Xu Y, et al. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. Journal of Thoracic Disease. 2015; 7 (3): 376-85. doi: 10.3978/j.issn.2072-1439.2014.12.33.
19.    Peleg AY, et al. Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews. 2008; 21 (3): 538-82. doi: 10.1128/CMR.00058-07.
20.    Wang CH, et al. Outbreak of imipenem-resistant Acinetobacter baumannii in different wards at a regional hospital related to untrained bedside caregivers. American Journal of Infection Control. 2017; 45 (10): 1086-90. doi: 10.1016/j.ajic.2017.04.016.
21.    Kuntaman K, et al. Occurrence and characterization of carbapenem-resistant Gram-negative bacilli: A collaborative study of antibiotic-resistant bacteria between Indonesia and Japan. International Journal of Urology. 2018; 25 (11): 966-72. doi: 10.1111/iju.13787.
22.    Saharman YR, et al. Endemic carbapenem-nonsusceptible Acinetobacter baumannii-calcoaceticus complex in intensive care units of the national referral hospital in Jakarta, Indonesia. Antimicrobial Resistance and Infection Control. 2018; 7 (5): 1-12. doi: 10.1186/s13756-017-0296-7.
23.    Aliramezani A, et al. Clonal relatedness and biofilm formation of OXA-23-producing carbapenem resistant Acinetobacter baumannii isolates from hospital environment. Microbial Pathogenesis. 2016; 99: 204-08. doi: 10.1016/j.micpath.2016.08.034.
24.    “Clinical and Laboratory Standards Institute,” 2019.
25.    McMullen AR, et al. Evaluation of genotypic and phenotypic methods to detect carbapenemase production in gram-negative bacilli. Clinical Chemistry. 2017; 63 (3): 723-30. doi: 10.1373/clinchem.2016.264804.
26.    Simner PJ, et al. Multicenter evaluation of the modified carbapenem inactivation method and the carba NP for detection of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii,” Journal of Clinical Microbiology. 2018; 56 (1): 1-10. doi: 10.1128/JCM.01369-17.
27.    Halain AA, et al. Nursing Workload in Relation to Nosocomial Infection in Public Hospital Intensive Care Unit, Malaysia. Research J. Pharm. and Tech 2018; 11(9): 3892-96. doi: 10.5958/0974-360X.2018.00713.8
28.    Rani U, et al. Factors Associated with Neonatal Healthcare-Associated Infections (HAIs) in India: A Protocol for Systematic Review and Meta-analysis. Research J. Pharm. and Tech. 2020; 13(4): 1672-8. doi: 10.5958/0974-360X.2020.00303.0
29.    Li YJ, et al. Pneumonia caused by extensive drug-resistant Acinetobacter baumannii among hospitalized patients: Genetic relationships, risk factors and mortality. BMC Infectious Diseases. 2017; 17 (1): 1-10. doi: 10.1186/s12879-017-2471-0.
30.    Helmy OM, Kashef MT. Different phenotypic and molecular mechanisms associated with multidrug resistance in Gram-negative clinical isolates from Egypt. Infection and Drug Resistance. 2017; 10: 479-98. doi: 10.2147/IDR.S147192
31.    Lin CY, et al. Risk factors of multidrug-resistant Acinetobacter baumannii recurrence after successful eradication in ventilated patients. Biomedical Journal. 2016; 39 (2): 130-8. doi: 10.1016/j.bj.2015.07.001.
32.    Shrestha S, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage. International Journal of Antimicrobial Agents. 2015; 46 (5): 526-31. doi: 10.1016/j.ijantimicag.2015.07.012.
33.    Reshmi B, Gopinath P. Detection of blaNDM-1gene for the production of MBL in Clinical Strains of Klebsiella pneumoniae. Research J. Pharm. and Tech 2016; 9 (10):1618-20. doi: 10.5958/0974-360X.2016.00321.8
34.    Varshan R, Prakasam G. Detection of blaVIM gene encoding Metallo Beta Lactamase resistance among clinical isolates of Pseudomonas aeruginosa. Research J. Pharm. and Tech 2016; 9 (9):1465-8. doi: 10.5958/0974-360X.2016.00284.5
35.    Yang HY, et al. Outbreaks of imipenem resistant Acinetobacter Baumannii producing OXA-23 β-lactamase in a Tertiary Care Hospital in Korea. Yonsei Medical Journal. 2009; 50 (6): 764-70. doi: 10.3349/ymj.2009.50.6.764.
36.    Sohrabi N, et al. Prevalence of oxa-type β-lactamases among Acinetobacter baumannii isolates from northwest of Iran. Microbial Drug Resistance. 2012; 18 (4): 385-9. doi: 10.1089/mdr.2011.0077.
37.    Merino M, et al. Nosocomial outbreak of a multiresistant Acinetobacter baumannii expressing OXA-23 carbapenemase in Spain. Microbial Drug Resistance. 2014; 20 (4): 259-63. doi: 10.1089/mdr.2013.0127.
38.    Kubo Y, et al. Spread of OXA-23-producing Acinetobacter baumannii ST2 and ST246 in a hospital in Japan. Journal of Medical Microbiology. 2015; 64 (7): 739-44. doi: 10.1099/jmm.0.000077.
39.    Hsu LY, et al. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clinical Microbiology Reviews. 2017; 30 (1): 1-22. doi: 10.1128/CMR.00042-16.
40.    AL-Harmoosh RA, et al. Detection of Efflux Pumps Genes in Clinical Isolates of Acinetobacter baumannii . Research J. Pharm. and Tech 2017; 10 (12): 4231-6. doi: 10.5958/0974-360X.2017.00775.2
41.    Kareem MH, Hasan AY. Inhibition of Biofilm formation of Imipenem-resistant Acinetobacter baumannii using Curcuma longa extracts, silver nanoparticles and Azithromycin. Research J. Pharm. and Tech 2019; 12 (9):4463-70. doi: 10.5958/0974-360X.2019.00769.8
42.    Sharmalkumar M, et al. In-vitro study on Antimicrobial and Anticancer activities of marine sponge Clathria frondifera associated bacteria. Research J. Pharm. and Tech. 2020; 13 (8):3753-8. doi: 10.5958/0974-360X.2020.00664.2
43.    Kumar U, et al. Benzimidazole: Structure Activity Relationship and Mechanism of Action as Antimicrobial Agent. Research J. Pharm. and Tech. 2017; 10 (7): 2400-14. doi: 10.5958/0974-360X.2017.00425.5

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available