Author(s): Ananta Choudhury, Madhusmita Kumari, Biplab Kumar Dey


DOI: 10.52711/0974-360X.2022.00552   

Address: Ananta Choudhury, Madhusmita Kumari*, Biplab Kumar Dey
Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati – 781026, Assam, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022

The vaginal mucosa is well recognized as a route for delivering variety of drugs. Considerable number of anti-fertility drugs have been successfully delivered through vaginal and uterine canals. The goal of this review is to summarize the present clinical state of intravaginal medicines and IUDs, with a prime focus on the available in-vitro dissolution study methods and their importance. At present different vaginal drug delivery systems are available in the market and a few are under clinical trial. The accurate estimation drug release profile of any of such dosage form is primarily depends on the standard dissolution study protocol. The vaginal delivery system is an effective site for local and systemic drug delivery, and a range of innovative formulation strategies are being researched for its development. The concept behind the study is mainly lies on the fact that the standard dissolution protocol may vary based on formulation type, its design and its therapeutic goals.

Cite this article:
Ananta Choudhury, Madhusmita Kumari, Biplab Kumar Dey. In-Vitro Dissolution Study protocol for various Vaginal Dosage Forms. Research Journal of Pharmacy and Technology. 2022; 15(7):3295-0. doi: 10.52711/0974-360X.2022.00552

Ananta Choudhury, Madhusmita Kumari, Biplab Kumar Dey. In-Vitro Dissolution Study protocol for various Vaginal Dosage Forms. Research Journal of Pharmacy and Technology. 2022; 15(7):3295-0. doi: 10.52711/0974-360X.2022.00552   Available on:

1.    Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Banerjee K S et al. Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation. 2012; 2(1): 2–11. doi: 10.4103/2230-973X.96920.
2.    Thonneau P F, Almont T et al. Contraceptive efficacy of intrauterine devices. American Journal of Obstetrics and Gynecology. 2008; 198(3): 248–253. doi: 10.1016/ j.ajog.2007.10.787.
3.    Hussain A, Ahsan F et al. The vagina as a route for systemic drug delivery. Journal of Controlled Release. 2005; 103(2): 301–313. doi: 10.1016/j.jconrel.2004.11.034.
4.    Cook MT, Brown MB et al. Polymeric gels for intravaginal drug delivery.  Journal of Controlled Release.2018; 28; 270:145-157. doi: 10.1016/j.jconrel.2017.12.004.
5.    Benagiano G, Gabelnick H, Farris M et al. Contraceptive devices: intravaginal and intrauterine delivery system. Expert Review of Medical Devices. 2008; 5(5), 639-654. doi: 10.1586/ 17434440.5.5.639.
6.    Vaneechoutte M et al. The human vaginal microbial community. Frontier in microbiology. 2017; 168(9–10): 811–825. doi: 10.1016/j.resmic.2017.08.001.
7.    Hussain A, Ahsan F et al. The vagina as a route for systemic drug delivery. Journal of Controlled Release. 2005; 301 – 313. doi: 10.1016/j.jconrel.2004.11.034.
8.    Han L, Taub R, Jensen J.T et al. Cervical mucus and contraception: what we know and what we don’t. Contraception. 2017; 96 (5): 310–321. doi: 10.1016/j.contraception.2017.07.168.
9.    Teller R S, Malaspina D C, Rastogi R et al. Controlling the hydration rate of a hydrophilic matrix in the core of an intravaginal ring determines antiretroviral release. Journal of Controlled Release. 2016; 224: 176–183. doi: 10.1016/j.jconrel.2015.12.035.
10.    Johal HS, Garg T, Rath G, Goyal AK et al. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Delivery. 2016; 23(2):550-63. doi: 10.3109/10717544.2014.928760.
11.    Traore Y L et at. Impact of Hydroxychloroquine‐loaded polyurethane intravaginal rings on lactobacilli. Antimicrobial Agents and Chemotherapy. 2015; 59 (12): 7680–7686. doi: 10.1128/AAC.01819-15.
12.    Singh Malik D, Mital N, Kaur G et al. Topical drug delivery systems: a patent review. Expert Opinion on Therapeutic Patents.2016; 26(2):213-28. doi: 10.1517/13543776.2016.1131267.
13.    Bassi P, Kaur G et al. Innovations in bioadhesive vaginal drug delivery system. Expert Opinion on Therapeutic Patents.2012; 22(9):1019-32. doi: 10.1517/13543776.2012.714369.
14.    Woodard T L, Diamond M P et al. Physiologic measures of sexual function in women: a review. Fertility and Sterility. 2009; 92 (1): 19–34. doi: 10.1016/j.fertnstert.2008.04.041.
15.    Lahteenmaki P, Jukarainen H et al. Novel delivery systems in contraception. British Medical Bulletin.2000; 56 (3): 739–748. doi: 10.1258/0007142001903328.
16.    Hannan N J, Nie G, Rainzcuk A et al. Uterine lavage or aspirate: which view of the intrauterine environment?. Reproductive Sciences .2012; 19 (10): 1125–1132. doi: 10.1177/1933719112443879.
17.    Nelson L A, MassoudiN et al. New developments in intrauterine device use: focus on the US.Open Access Journal of Contraception. 2016; 7: 127–141. doi: 10.2147/OAJC.S85755.
18.    Kale V, Trivedi R, Muley P et al. Proposed Design of a Dissolution Apparatus for vaginal formulations containing probiotics. Dissolution. Technologies. 2008; 15 (2): 27–29. doi: 10.14227/DT150208P27.
19.    Du Toit A et al. Human trial of vaginal microbiome transplantation. Nature Reviews Microbiology.2019; 17(12):722. doi: 10.1038/s41579-019-0291-5.
20.    Ferguson L M, Rohan L C et al. The importance of the vaginal delivery route for antiretrovirals in HIV prevention. Therapeutic Delivery. 2011; 2 (12): 1535–1550. doi: 10.4155/tde.11.126.
21.    Patil P, Bhopale P et al. Intravaginal Drug Delivery System: Compherensive Approach to Vaginal Formulations. Journal of Drug Delivery and Therapeutics. 2019; 9(5):171-174. doi:10.22270/jddt.v9i5.3560.
22.    Agha‐Rahimi A, Khalili M A, Nottola S A et al. Cryoprotectant‐free vitrification of human spermatozoa in new artificial seminal fluid. Andrology.2016; 4 (6): 1037–1044. doi: 10.1111/andr.12212.
23.    Bastidas J M, Cano E, Mora N et al. Copper corrosion‐simulated uterine solutions. Contraception. 2000; 61 (6): 395–399. doi: 10.1016/s0010-7824(00)00124-4.
24.    Setnikar I, Fantelli S et al. Liquefaction time of rectal suppositories. Journal of Pharmaceutical Science.1962; 51: 566–571. doi: 10.1002/jps.2600510616.
25.    Zhu J J, Xu N X, Zhang C D et al. Characteristics of copper corrosion in simulated uterine fluid in the presence of protein. Advance Contraception. 1999; 15 (3): 179–190. doi: 10.1023/a:1006793231274.
26.    Baloglu E, Ay Senyigit Z, Karavana S Y et al. In vitro evaluation of mucoadhesive vaginal tablets of antifungal drugs prepared with thiolated polymer and development of a new dissolution technique for vaginal formulations. Chem Pharm Bull. 2011; 59 (8): 952–958. doi: 10.1248/cpb.59.952.
27.    Baffoe C S, Nguyen N, Boyd P et al. Disulfiram‐loaded immediate and extended release vaginal tablets for the localised treatment of cervical cancer. Journal of Pharmacy and Pharmacology. 2015; 67 (2): 189–198. doi: 10.1111/jphp.12330.
28.    Klein S, Tietz K et al. Vaginal and Intrauterine Delivery Systems. In Vitro Drug Release Testing of Special Dosage Forms. Contraceptions. 2019; 177–209. doi: 10.3390/pharmaceutics11100538.
29.    Zaveri T, Hayes J E et al. Release of tenofovir from carrageenan‐based vaginal suppositories. Pharmaceutics. 2014; 6 (3): 366–377. doi: 10.3390/pharmaceutics6030366.
30.    Choudhury A, Roy A, Bahadur S, Saha S et al. Phytoconstituent based mucoadhesive antifungal vaginal formulation: an effective and innovative approach, bioscience and biotechnology research communications. 2016; 9(4): 694-701. doi:10.21786/bbrc/9.4/17.
31.    Klein R R, Tao J Q ,Wilder S et al. Development of an in vitro release test (IVRT) for a vaginal microbicide gel. Dissolution Technology. 2010; 17 (4): 6–10. doi:10.14227/DT170410P6.
32.    Kim Y T, Shin Garripelli V K et al. A thermosensitive vaginal gel formulation with HPgammaCD for the pH‐dependent release and solubilization of amphotericin British European Journal of Pharmaceutical Science. 2010; 41 (2): 399–406. doi: 10.1016/j.ejps.2010.07.009.
33.    Forbes C J, Lowry D, Geer L et al. Non‐aqueous silicone elastomer gels as a vaginal microbicide delivery system for the HIV‐1 entry inhibitor maraviroc. Journal of Controlled Release. 2011; 156 (2): 161–169. doi: 10.1016/j.jconrel.2011.08.006.
34.    Yoo J W, Dharmala K et al. The physicodynamic properties of mucoadhesive polymeric films developed as female controlled drug delivery system. International Journal of Pharmaceutics. 2006; 309 (1–2): 139–145. doi: 10.1016/j.ijpharm.2005.11.020.
35.    Roy A, Choudhury A, Nayak T K et al. Importance and Utility of Vagina as a Route for Drug Delivery System. Asian J. Res. Pharm. Sci. 2014; 4(2):86-92. doi:10.21786/bbrc/9.4/17.
36.    Verstraelen H, Vervaet C et al. Rationale and safety assessment of a novel intravaginal drug‐delivery system with sustained DL‐lactic acid release, intended for long‐term protection of the vaginal microbiome. Plos One. 2016; 11 (4): e0153441. doi: 10.1371/journal.pone.0153441.
37.    Asvadi N H, Dang N T et al. Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract. Journal of Materials Science: Materials in Medicine. 2013; 24 (12): 2719–2727. doi: 10.1007/s10856-013-5010-6.
38.    Kaur M, Gupta K M et al. Engineering a degradable polyurethane intravaginal ring for sustained delivery of dapivirine. Drug Delivery and Translational Research. 2011; 1 (3): 223–237. doi: 10.1007/s13346-011-0027-1.
39.    Roy A, Bahadur S, Choudhury A, Saha S et al.  Preparation and evaluation of phytoconstituent based mucoadhesive antifungal vaginal gel. Research Journal of Pharmacognosy and Phytochemistry. 2016; 8(3), 116-120. doi: 10.5958/0975-4385.2016.00021.2.
40.    Bastidas D M,Cano E et al. Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.European Journal of Contraception and Reproductive Health Care. 2005; 10 (2): 123–130. doi: 10.1016/s0142-9612(01)00154-5.
41.    Tabatabaei N, Eren AM, Barreiro LB, Yotova V, Dumaine A, Allard C, Fraser WD et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG: An International Journal of Obstetrics and Gynaecology2018; 126(3):349-358. doi: 10.1111/1471-0528.15299.
42.    Woolfson A D, Melcolm R K et al. Drug delivery by the intravaginal route. Critical Reviews in Therapeutic Drug Carrier Systems. 2000; 17: 509-55. doi :10.1615/CritRevTherDrugCarrierSyst.v17.i5.30.
43.    Reid G, Brigidi P, Burton JP, Contractor N, Duncan S, Fargier E et al. Microbes central to human reproduction.American Journal of Reproductive Immunology. 2015; 73: 1–11. doi: 10.1111/aji.12319.
44.    Sirota I, Zarek S M, Segars J H et al. Potential influence of the microbiome on infertility and assisted reproductive technology.Seminars in Reproductive Medicine. 2014; 32: 35–42. doi: 10.1055/s-0033-1361821.
45.    Choudhury A, Roy A et al. Preparation and Characterization Vagino-adhesive Fluconazole Gel. Research Journal of Pharmacy and Technology.2016; 9(8):1086-1090. doi: 10.5958/0974-360X.2016.00207.9.
46.    Chu DM, Seferovic M, Pace RM, Aagaard KM et al. The microbiome in preterm birth. Best Practice and Research: Clinical Obstetrics and Gynaecology. 2018; 52:103-113. doi: 10.1016/j.bpobgyn.2018.03.006.
47.    Sandra Klei, Katharina Tietz et al. Vaginal and Intrauterine Delivery Systems. In vitro drug release testing of special dosage forms. 2019; 177-209.
48.    Ferguson L M, Rohan L C et al. The importance of the vaginal delivery route for antiretrovirals in HIV prevention. Therapeutic Delivery. 2011; 2 (12): 1535–1550. doi: 10.4155/tde.11.126.
49.    Kusuma S A F,Tjitraresmi A, Soebagio B et al. Design and Evaluation of Vaginal Douche Formulation for the Ethanolic Extract of Cabbage ( Brassica oleracea var. Capitata alba) as Anti-Flour Albus. Research Journal of Pharmacy and Technology.2020; 13(3):1211-1218. doi: 10.5958/0974-360X.2020.00223.1.
50.    Stout MJ, Zhou Y, Wylie KM, Tarr PI, Macones GA, Tuuli MG et al. Early pregnancy vaginal microbiome trends and preterm birth. The American Journal of Obstetrics and Gynecology.2017; 217(3):356.e1-356.e18. doi: 10.1016/j.ajog.2017.05.030.
51.    Kavanaugh M L, Jerman J, Finer L B et al. Changes in use of long-acting reversible contraceptive methods among U.S. women, 2009–2012. Obstetrics and Gynecology. 2015; 126(5):917–927. doi: 10.1097/AOG.0000000000001094.
52.    Nelson A L, Fong J K et al. Intrauterine infusion of lidocaine does not reduce pain scores during IUD insertion. Contraception. 2013; 88(1):37–40. doi: 10.1016/j.contraception.2012.12.009.
53.    Mahore J G, Deshkar S S, Kumare P P et al. Solid Dispersion Technique for Solubility Improvement of Ketoconazole for Vaginal Delivery. Research Journal of Pharmacy and Technology.2019; 12(4):1649-1654. doi: 10.5958/0974-360X.2019.00276.2.
54.    Dobaria N, Mashrav R et al. Vaginal Drug Delivery System: A Review of Current Status; East and Central African. Journal of Pharmaceutical Sciences. 2007; 10:3-13. doi: 10.4314/ecajps.v10i1.9754.
55.    Romero R, Gajer P et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term.2014; 2:18. doi: 10.1186/2049-2618-2-18.
56.    Park M S, Chang B S et al. Ultrastructural Characteristics of HPV in Women’s Vaginal Cells. Research Journal of Pharmacy and Technology. 2019; 12(9):4305-4309. doi: 10.1097/OLQ.0b013e318064c8c5
57.    Khan Y M, Aziz I, Roy M et al. A Review- Vaginal Drug Delivery System. Asian Journal of Research in Pharmaceutical Sciences.2015; 5(3): 193-200. doi:10.5958/2231-5659.2015.00029.6.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available