Author(s): Elly Purwanti, Feri E. Hermanto, Wahyu Prihanta, Tutut I. Permana


DOI: 10.52711/0974-360X.2022.00542   

Address: Elly Purwanti1*, Feri E. Hermanto2, Wahyu Prihanta1, Tutut I. Permana1
1Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, East Java, Indonesia 65144.
2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, East Java, Indonesia 65145.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022

Dietary intervention, particularly legumes consumption, plays a significant role in promoting health status in diabetes mellitus management. As poorly known legumes, Dolichos lablab (DL) is possibly to be one of the dietary options for diabetes intervention. However, the predictive or precise mechanism of DL’s anti-diabetic activity remains inconclusive. This study aimed to determine the nutritional and phytochemical content in addition to anti-diabetic properties of DL. Total protein, crude fat, crude fibers, and gross energy were evaluated, while anti-diabetic properties were predicted using molecular docking according to identified compound from Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) analysis. Screened compound from molecular docking then passed to physicochemical properties and bioactivity prediction using Swiss-ADME and molinspiration, separately. The result showed that DL has high protein fiber and gross energy content with a lower fat percentage. Additionally, DL has numerous phenolic acid and flavonoid compounds according to LC-HRMS analysis. From the docking analysis, fourteen compounds have substantial probability to give the beneficial effect of glucose metabolism regulator and insulin signaling repairers through inhibition of ?-amylase, DPP4, and PTP1B. Finally, from the physicochemical properties and bioactivity estimations, 19-Norandrostenedione, 19-Nortestosterone, Icariside B1, Ilicic Acid, and Psilostachyin B have excellent pharmacokinetic properties along with considerable biological activity as enzyme inhibitors and nuclear receptor ligands. In conclusion, nutritional evaluation and molecular docking analysis revealed that DL might serve as a suitable dietary intervention for diabetes mellitus management.

Cite this article:
Elly Purwanti, Feri E. Hermanto, Wahyu Prihanta, Tutut I. Permana. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. Research Journal of Pharmacy and Technology. 2022;15(7):3233-0. doi: 10.52711/0974-360X.2022.00542

Elly Purwanti, Feri E. Hermanto, Wahyu Prihanta, Tutut I. Permana. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. Research Journal of Pharmacy and Technology. 2022;15(7):3233-0. doi: 10.52711/0974-360X.2022.00542   Available on:

1.    Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. Journal of Epidemiology and Global Health. 2020;10(1):107–111.
2.    Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice. 2017;128:40–50.
3.    Guess ND. Dietary Interventions for the Prevention of Type 2 Diabetes in High-Risk Groups: Current State of Evidence and Future Research Needs. Nutrients. 2018;10(9).
4.    Dewangan V, Pandey H. Pathophysiology and Management of Diabetes: A Review. Research Journal of Pharmacology and Pharmacodynamics. 2017;9(4):219–222.
5.    Parsa P, Ahmadinia-Tabesh R, Mohammadi Y. Assessment of the risk of Coronary Heart Disease in Diabetes Patients Type-II. Asian Journal of Nursing Education and Research. 2019;9(2):267–270.
6.    Khan MY, Aziz I, Bihari B, Kumar H, Roy M, Verma VK. A Review- Phytomedicines Used in Treatment of Diabetes. Asian Journal of Pharmaceutical Research. 2014;4(3):135–154.
7.    Pandeya SN, Kumar R, Kumar A, Pathak AK. Antidiabetics Review on Natural Products. Research Journal of Pharmacy and Technology. 2010;3(2):300–318.
8.    Preethi PJ. Herbal Medicine for Diabetes Mellitus: A Review. Asian Journal of Pharmaceutical Research. 2013;3(2):57–70.
9.    Bielefeld D, Grafenauer S, Rangan A. The Effects of Legume Consumption on Markers of Glycaemic Control in Individuals with and without Diabetes Mellitus: A Systematic Literature Review of Randomised Controlled Trials. Nutrients. 2020;12(7).
10.    Minde JJ, Venkataramana PB, Matemu AO. Dolichos Lablab-an underutilized crop with future potentials for food and nutrition security: a review. Critical Reviews in Food Science and Nutrition. 2020:1–13.
11.    Balekari U, Reedy CS, Krishnaveni K. Antihyperglycemic and antihyperlipidaemic activities of Dolichos lablab seed extract on streptozotocin-nicotinamide induced diabetic rats. Proceedings of International Conference on Pharmacognosy, Phytochemistry & Natural Products. 2013;4(2):170.
12.    Singhal P, Kaushik G, Mathur P. Antidiabetic Potential of Commonly Consumed Legumes: A Review. Critical Reviews in Food Science and Nutrition. 2014;54(5):655–672.
13.    Nguyen NDT, Le LT. Targeted proteins for diabetes drug design. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2012;3(1):013001.
14.    Guo S. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms. The Journal of endocrinology. 2014;220(2):T1–T23.
15.    Sales PM, Souza PM, Simeoni LA, Silveira D. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques. 2012;15(1):141–183.
16.    Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Current Topics in Medicinal Chemistry. 2019;19(4):246–263.
17.    Röhrborn D, Wronkowitz N, Eckel J. DPP4 in Diabetes. Frontiers in Immunology. 2015;6.
18.    Figueiredo A, Leal EC, Carvalho E. Protein tyrosine phosphatase 1B inhibition as a potential therapeutic target for chronic wounds in diabetes. Pharmacological Research. 2020;159:104977.
19.    Rasouli H, Hosseini-Ghazvini SM-B, Adibi H, Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function. 2017;8(5):1942–1954.
20.    Selvaraj G, Kaliamurthi S, Cakmak ZE, Cakmak T. Computational screening of dipeptidyl peptidase IV inhibitors from micoroalgal metabolites by pharmacophore modeling and molecular docking. Phycological Research. 2016;64(4):291–299.
21.    Karthikeyan P, Prakash MVD, Sendurapandi PD, Periandavan K. Assessment of the antidiabetic potential of Gymnemic acid as α-amylase and α-Glucosidase inhibitor using invitro and insilico tools. Research Journal of Pharmacy and Technology. 2021;14(9):4755–4759.
22.    Nagini DV, Krishna MSR, Karthikeyan S. Identification of Novel Dipeptidyl Peptidase -IV Inhibitors from Ferula asafoetida through GC-MS and Molecular Docking Studies. Research Journal of Pharmacy and Technology. 2020;13(11):5072–5076.
23.    Karthik VP, Punnagai, Suresh P, David DC. In Vitro Hydrogen Peroxide Scavenging Activity and Alpha Amylase Inhibitory Activity of Croton tiglium extract. Research Journal of Pharmacy and Technology. 2019;12(6):3045–3047.
24.    Khamis M, Talib F, Rosli NS, Dharmaraj S, Mohd KS, Srenivasan S, Latif ZA, Utharkar MRS. In vitro α-amylase and α-glucosidase inhibition and increased glucose uptake of Morinda citrifolia fruit and scopoletin. Research Journal of Pharmacy and Technology. 2015;8(2):189–193.
25.    Chandramore K. Review on Dipeptidyl Peptidase IV Inhibitors as a Newer Target for Diabetes Mellitus Treatment. Asian Journal of Pharmaceutical Research. 2017;7(4):230–238.
26.    Purwanti E, Prihanta W, Fauzi A. The Diversity of Seed Size and Nutrient Content of Lablab Bean from Three Locations in Indonesia. International Journal of Advanced Engineering, Management and Science. 2019;5(6):395–402.
27.    Thiex N. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. Journal of AOAC INTERNATIONAL. 2009;92(1):61–73.
28.    Purwanti E, Hermanto FE, Souhaly JW, Prihanta W, Permana TI. Exploring public health benefits of Dolichos lablabas a dietary supplement during the COVID-19 outbreak: A computational study. Journal of Applied Pharmaceutical Science. 2021;11(2):135–140.
29.    Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.). 2015;1263:243–250.
30.    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of computational chemistry. 2010;31(2):455–461.
31.    Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7:42717.
32.    Maass BL, Knox MR, Venkatesha SC, Angessa TT, Ramme S, Pengelly BC. Lablab purpureus—A Crop Lost for Africa? Tropical Plant Biology. 2010;3(3):123–135.
33.    American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S46–S60.
34.    Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. International Journal of Health Sciences. 2017;11(2):65–71.
35.    McRae MP. Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-analyses. Journal of Chiropractic Medicine. 2018;17(1):44–53.
36.    Riccardi G, Rivellese AA. Effects of dietary fiber and carbohydrate on glucose and lipoprotein metabolism in diabetic patients. Diabetes Care. 1991;14(12):1115–1125.
37.    Yang J, Park HJ, Hwang W, Kim TH, Kim H, Oh J, Cho MS. Changes in the glucose and insulin responses according to high-protein snacks for diabetic patients. Nutrition Research and Practice. 2021;15(1):54–65.
38.    Maheshu V, Priyadarsini DT, Sasikumar JM. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. Journal of Food Science and Technology. 2013;50(4):731–738.
39.    Habib HM, Theuri SW, Kheadr EE, Mohamed FE. Functional, bioactive, biochemical, and physicochemical properties of the Dolichos lablab bean. Food & Function. 2017;8(2):872–880.
40.    Pieczykolan A, Pietrzak W, Gawlik-Dziki U, Nowak R. Antioxidant, Anti-Inflammatory, and Anti-Diabetic Activity of Phenolic Acids Fractions Obtained from Aerva lanata (L.) Juss. Molecules (Basel, Switzerland). 2021;26(12):3486.
41.    Vinayagam R, Jayachandran M, Xu B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phytotherapy research: PTR. 2016;30(2):184–199.
42.    Lindawati NY, Puspitasari D, Murtisiwi L, Rahmania TA. Correlation of Flavonoid content on Antidiabetic activity in red beans (Phaseulus vulgaris L.) and its Processed Products. Research Journal of Pharmacy and Technology. 2021;14(3):1293–1297.
43.    Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum. 2004;17(3):183–190.
44.    Bonadonna RC. Alterations of Glucose Metabolism in Type 2 Diabetes Mellitus. An Overview. Reviews in Endocrine and Metabolic Disorders. 2004;5(2):89–97.
45.    Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Reviews in Medicinal Chemistry. 2010;10(4):315–331.
46.    Nyambe-Silavwe H, Villa-Rodriguez JA, Ifie I, Holmes M, Aydin E, Jensen JM, Williamson G. Inhibition of human α-amylase by dietary polyphenols. Journal of Functional Foods. 2015;19:723–732.
47.    Zou W. PTP1B, A Potential Target of Type 2 Diabetes Mellitus. Molecular Biology: Open Access. 2016;5(4):1–6.
48.    Vardarli I, Nauck MA, Köthe LD, Deacon CF, Holst JJ, Schweizer A, Foley JE. Inhibition of DPP-4 with Vildagliptin Improved Insulin Secretion in Response to Oral as well as “Isoglycemic” Intravenous Glucose without Numerically Changing the Incretin Effect in Patients with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism. 2011;96(4):945–954.
49.    Wani JH, John-Kalarickal J, Fonseca VA. Dipeptidyl peptidase-4 as a new target of action for type 2 diabetes mellitus: a systematic review. Cardiology Clinics. 2008;26(4):639–648.
50.    Gum RJ, Gaede LL, Koterski SL, Heindel M, Clampit JE, Zinker BA, Trevillyan JM, Ulrich RG, Jirousek MR, Rondinone CM. Reduction of Protein Tyrosine Phosphatase 1B Increases Insulin-Dependent Signaling in ob/ob Mice. Diabetes. 2003;52(1):21–28.
51.    Krishnan N, Bonham CA, Rus IA, Shrestha OK, Gauss CM, Haque A, Tocilj A, Joshua-Tor L, Tonks NK. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nature Communications. 2018;9(1):283.
52.    Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK. Allosteric inhibition of protein tyrosine phosphatase 1B. Nature Structural & Molecular Biology. 2004;11(8):730–737.
53.    Groves MR, Yao Z-J, Roller PP, Burke Terrence R, Barford D. Structural Basis for Inhibition of the Protein Tyrosine Phosphatase 1B by Phosphotyrosine Peptide Mimetics,. Biochemistry. 1998;37(51):17773–17783.
54.    Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports. 2017;7(1):46277.
55.    Tarcsay Á, Keserű GM. Contributions of Molecular Properties to Drug Promiscuity. Journal of Medicinal Chemistry. 2013;56(5):1789–1795.
56.    Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International Journal of Pharmaceutics. 2018;549(1–2):133–149.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available