Author(s): Rahul Kumar Mishra, Ashutosh Mishra, Amresh Gupta

Email(s): rahulmishra53@rediffmail.com

DOI: 10.52711/0974-360X.2022.00484   

Address: Rahul Kumar Mishra1*, Ashutosh Mishra2, Amresh Gupta3
1Department of Pharmacology, Faculty of Pharmacy, Institute of Technology and Management GIDA Gorakhpur (Dr A P J Abdul Kalam Technical University Lucknow)- U.P -India.
2Department of Pharmacognosy, Faculty of Pharmacy, Kashi Institute of Pharmacy, Varanasi (Dr A P J Abdul Kalam Technical University Lucknow)- U.P -India.
3Department of Pharmacognosy, Faculty of Pharmacy, Goel Institute of Pharmacy, Lucknow (Dr A P J Abdul Kalam Technical University Lucknow)- U.P -India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022


ABSTRACT:
Background: Curcumin (Curcuma longa) and propranolol display a plethora of pharmacological activity linked with multifunctional druggable nature designated as a promiscuous or dirty drug (magic shotguns) that hit 'on-target as well as 'off-target' (anti-target). Multifactorial origins, with complex neuronal networks and broad-spectrum symptomatology, operates most CNS disorders. Anxiety is one of the comorbidities in the psychogenic spectrum of obsessive-compulsive disorder (OCD). The present study of OCD has been based on its multifunctionality and diverse drug potential, tailoring together the morbidity and comorbidity patterns of OCD. Very few multimodal drugs did trial in this regard, which has multifunctional druggability, except selective serotonin reuptake inhibitors (SSRIs) that work via the one-drug-one-receptor-one-disease approach; however, with inter-individual variability, unwanted side effects and limited multifunctionality with the druggable targets. SSRI success rates in OCD and its related disorder are minimal, especially in the adversity of comorbidity pattern. Objective: The principal objective of the current research was to testify the multifunctional druggable plethora of curcumin via repurposing of its dirty drug nature to reverse the obsessed anxiety of propranolol withdrawal-induce mice, besides the "one drug one receptor" approach or magic bullet. Methods: The present study evaluated OCD related anxiety-like behavior after different periods of abstinence (24 h, 7 and 21 days) from repeated propranolol (10 mg/kg) administration in mice. In addition, we also examined the action of curcumin (EERCL-50 mg/kg) and fluoxetine (20 mg/kg) for the attenuation or reversal of OCD related anxiety-like behavior after seven days to 24 hours propranolol withdrawal. The initial stage of the hypothesis toward the target of curcumin was identified via in-silico using SwissADME drug-likeness study, followed by in-vivo studies using Swiss albino mice. Evaluation for the same did use elevated plus maze (EPM), marble-burying behaviour (MBB) and motor activity (MA) test as a model. Further, did also investigate the antioxidant activity. Result: The result revealed a decrease in all parameters 24 hours and 14 days after exposure to propranolol, indicating anxious behaviour. The administration of curcumin and fluoxetine after 24 hrs of abstinence reduced animal anxiety in EPM; after the abstinence periods, the drug reduced the MA in the MBB. Curcumin reversed the anxiogenic effect induced by propranolol in EPM. The value of p<0.05 was considered statistically significant. Conclusion: Results revealed that propranolol might, to a large extent, impart to withdrawal-induced obsessed anxiety, and curcumin could effectively treat propranolol dependent obsessed mice. Further, curcumin anti-compulsive competency substantially showed promising success besides one drug-one receptor-one disease approach or magic bullet.


Cite this article:
Rahul Kumar Mishra, Ashutosh Mishra, Amresh Gupta. Promiscuous or Dirty drug with Multifunctional Druggability nature of Curcumin (Curcuma longa Linn.); Repurposing in propranolol withdrawal-induced OCD related Anxiety: A promising drug discovery besides One-Drug-One-Receptor approach via in silico in vivo studies. Research Journal of Pharmacy and Technology. 2022; 15(7):2898-8. doi: 10.52711/0974-360X.2022.00484

Cite(Electronic):
Rahul Kumar Mishra, Ashutosh Mishra, Amresh Gupta. Promiscuous or Dirty drug with Multifunctional Druggability nature of Curcumin (Curcuma longa Linn.); Repurposing in propranolol withdrawal-induced OCD related Anxiety: A promising drug discovery besides One-Drug-One-Receptor approach via in silico in vivo studies. Research Journal of Pharmacy and Technology. 2022; 15(7):2898-8. doi: 10.52711/0974-360X.2022.00484   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-7-6


REFERENCES:
1.     Pallanti S, Grassi G, Sarrecchia ED, Cantisani A, Pellegrini M. Obsessive-compulsive disorder comorbidity: Clinical assessment and therapeutic implications. Front Psychiatry. 2011; 2(DEC):1-11. doi:10.3389/fpsyt.2011.00070
2.     Bartz JA, Hollander E. Is obsessive-compulsive disorder an anxiety disorder? Prog Neuro-Psychopharmacology Biol Psychiatry. 2006; 30(3):338-352. doi:10.1016/j.pnpbp.2005.11.003
3.     Hopkins AL. NEWS & VIEWS Predicting promiscuity A fossil record for exoplanets. 2009; 462112(November):167-168.
4.     Mencher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol. 2005; 5:1-7. doi:10.1186/1472-6904-5-3
5.     Huang Y, Furuno M, Arakawa T, et al. A framework for identification of on- and off-target transcriptional responses to drug treatment. Sci Rep. 2019; 9(1):1-9. doi:10.1038/s41598-019-54180-4
6.     Cortés-Cabrera A, Morris GM, Finn PW, Morreale A, Gago F. Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology. Br J Pharmacol. 2013; 170(3):557-567. doi:10.1111/bph.12294
7.     Gallo K, Goede A, Eckert A, Moahamed B, Preissner R, Gohlke BO. PROMISCUOUS 2.0: A resource for drug-repositioning. Nucleic Acids Res. 2021; 49(D1):D1373-D1380. doi:10.1093/nar/gkaa1061
8.     2. Parimal M Prajapati, Yatri Shah, DJ Sen CP. Combinatorial Chemistry: A New Approch for Drug Discovery. Asian J Res Chem. 2010; 3(2):249-254.
9.     Roth BL, Sheffer DJ, Kroeze WK. Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004; 3(4):353-359. doi:10.1038/nrd1346
10.     Owens J. Determining druggability. Nat Rev Drug Discov. 2007; 6(3):187. doi:10.1038/nrd2275
11.     Hoyer D, Professorial Fellow H, Adjunct. Targeting the 5-HT system: Potential side effects. Neuropharmacology. 2020; 179(August). doi:10.1016/j.neuropharm.2020.108233
12.     Elsey JWB, Filmer AI, Galvin HR, et al. Reconsolidation-based treatment for fear of public speaking: a systematic pilot study using propranolol. Transl Psychiatry. 2020; 10(1). doi:10.1038/s41398-020-0857-z
13.     Srinivasan A V. Propranolol: A 50-Year Historical Perspective. Ann Indian Acad Neurol. 2019; 22(1):21-26. doi:10.4103/aian.AIAN_201_18
14.     David B Oshevire, Aishatu Mustapha, Blessing U. Alozieuwa, et al. In-silico investigation of curcumin drug-likeness, gene-targets and prognostic relevance of the targets in panels of human cancer cohorts. GSC Biol Pharm Sci. 2021; 14(1):037-046. doi:10.30574/gscbps.2021.14.1.0002
15.     Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: How spicy is it? Mol Nutr Food Res. 2008; 52(9):1010-1030. doi:10.1002/mnfr.200700354
16.     Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Chemistry and biological activities of C. longa. Trends Food Sci Technol. 2005; 16(12):533-548. doi:10.1016/j.tifs.2005.08.006
17.     Bishnoi M, Chopra K, Kulkarni SK. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav. 2008; 88(4):511-522. doi:10.1016/j.pbb.2007.10.009
18.     Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The Essential Medicinal Chemistry of Curcumin. J Med Chem. 2017; 60(5):1620-1637. doi:10.1021/acs.jmedchem.6b00975
19.     Kemisha Sanghvi, Chandrasheker K. S, Vasudev Pai ARHN. Review on Curcuma longa: Ethnomedicinal uses, Pharmacological Activity and Phytochemical constituents. Res J Pharm Tech. 2020; 13((8))::3983-3986.
20.     Kim DH, Maneen MJ, Stahl SM. Building a Better Antipsychotic: Receptor Targets for the Treatment of Multiple Symptom Dimensions of Schizophrenia. Neurotherapeutics. 2009; 6(1):78-85. doi:10.1016/j.nurt.2008.10.020
21.     Prafulla Sabale, Arjun Modi VS. Curcuma longa Linn. A Phytochemical and Phytopharmacological Review. Res J Pharmacogn Phytochem. 2013; 5((2):):59-68.
22.     Enna SJ, Williams M. Challenges in the search for drugs to treat central nervous system disorders. J Pharmacol Exp Ther. 2009; 329(2):404-411. doi:10.1124/jpet.108.143420
23.     Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010; 31(3):115-123. doi:10.1016/j.tips.2009.11.006
24.     Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005; 4(1):71-78. doi:10.1038/nrd1609
25.     Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(March):1-13. doi:10.1038/srep42717
26.     Senthil Venkatachalam, Ayush Jaiswal, Anindita De RKV. Repurposing Drugs for Management of Alzheimer Disease. Res J Pharm Tech. 2019; 12((6):):3078-3088.
27.     Frantz S. Drug discovery: playing dirty. Nature. 2005; 437(7061):942-943. doi:10.1038/437942a
28.     S. M. Zahid Hosen, Dibyajyoti Saha, Raju Dash, Talha Bin Emran, Asraful Alam MJ. Drug Bank: An Update-Resource for in Silico Drug Discovery. Research. J Pharma Dos Forms Tech. 2012; 4((3)):166-171.
29.     Neha Subhash Patil SHR. Organization of Swiss Dock: In study of Computational and Molecular Docking Study. Asian J Res Chem. 2021; 14((2)):145-148.
30.     Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000; 44(1):235-249. doi:10.1016/s1056-8719(00)00107-6
31.     Sukanya Sahu, Khusbu Kumari, Nihar Ranjan Muduli AKM. Development of UV Spectrophotometry Absorption correction method for estimation of Curcumin and Aspirin from Bulk. Res J Pharm Tech. 2019; 12((10):):4857-4860.
32.     Sri Vasavi Reddy A, J. Suresh, Hemant K.S. Yadav AS. A Review on Curcuma longa. Res J Pharm Tech. 2012; 5((2)):158-165.
33.     Paulucci VP, Couto RO, Teixeira CCC, Freitas LAP. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Brazilian J Pharmacogn. 2013; 23(1):94-100. doi:10.1590/S0102-695X2012005000117
34.     Saleem U, Amin S, Ahmad B, Azeem H, Anwar F, Mary S. Acute oral toxicity evaluation of aqueous ethanolic extract of Saccharum munja Roxb. roots in albino mice as per OECD 425 TG. Toxicol Reports. 2017; 4(October):580-585. doi:10.1016/j.toxrep.2017.10.005
35.     Mukund Nagarnaik, Arun Sarjoshi, Ajay Bodkhe, Bhupendra Khanal, Mayuri Pise GP. Characterization of active constituents in Turmeric powder and validation of method for curcumin in samples. Asian J Res Chem. 2015; 8((10)):643-647.
36.     Jai Bharti Sharma, Sherry, Shailendra Bhatt, Vipin Saini MK. Development and Validation of UV-Visible Spectrophotometric method for the Estimation of Curcumin and Tetrahydrocurcumin in Simulated Intestinal Fluid. Res J Pharm Technol. 2021; 14((6):):2971-5.
37.     Suman Saha, Amit Roy, Sanjib Bahadur AC. Bioenhamcement of Curcumin by Dual approach. Res J Pharm Tech. 2016; 9((8):):1059-1063.
38.     P. Venugopalan TVD. Chemical and Pharmacological Studies on Curcuminoids. Asian J Res Chem. 2014; 7((3)):355-365.
39.     Mishra RK, Mishra A, Gupta A. Magic Shotgun Nature with Scattergun Approach of Curcumin Repurposing in Obsessive-Compulsive disorder: A Novel Metaphysician of Drug Discovery. CNS Neurol Disord Drug Targets. Published online May 2021. doi:10.2174/1871527320666210506185510
40.     da Silva Marques JG, Antunes FTT, da Silva Brum LF, et al. Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behav Brain Res. 2021; 399:113002. doi:10.1016/j.bbr.2020.113002
41.     Gilhotra N, Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010; 1352:167-175. doi:10.1016/j.brainres.2010.07.007
42.     Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine. 2000; 7(6):463-469. doi:10.1016/S0944-7113(00)80030-6
43.     Albelda N, Joel D. Animal models of obsessive-compulsive disorder: Exploring pharmacology and neural substrates. Neurosci Biobehav Rev. 2012; 36(1):47-63. doi:10.1016/j.neubiorev.2011.04.006
44.     Umathe SN, Bhutada PS, Jain NS, Mundhada YR, Borkar SS, Dhumal B. Role of nitric oxide in obsessive-compulsive behavior and its involvement in the anti-compulsive effect of paroxetine in mice. Nitric Oxide - Biol Chem. 2009; 21(2):140-147. doi:10.1016/j.niox.2009.07.001
45.     Nicolas LB, Kolb Y, Prinssen EPM. A combined marble burying-locomotor activity test in mice: A practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol. 2006; 547(1-3):106-115. doi:10.1016/j.ejphar.2006.07.015
46.     Albelda N, Joel D. Current animal models of obsessive compulsive disorder: An update. Neuroscience. 2012; 211:83-106. doi:10.1016/j.neuroscience.2011.08.070
47.     Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007; 595:105-125. doi:10.1007/978-0-387-46401-5_3
48.     Kaufmann FN, Gazal M, Bastos CR, Kaster MP, Ghisleni G. Curcumin in depressive disorders: An overview of potential mechanisms, preclinical and clinical findings. Eur J Pharmacol. 2016; 784:192-198. doi:10.1016/j.ejphar.2016.05.026
49.     Rubesh Kumar S., Ram Kishan J., Venkateshwar Roa K.N., Duganath N. KR. Simultaneous Spectrophotometric Estimation of Curcuminoids and Ascorbic Acid in Bulk Drug and Ayurvedic Polyherbal Tablet Dosage Form. Asian J Res Chem. 2010; 3(3):678-681.
50.     Hernandez-Patlan D, Solis-Cruz B, Méndez-Albores A, et al. Comparison of PrestoBlue(®) and plating method to evaluate antimicrobial activity of ascorbic acid, boric acid and curcumin in an in vitro gastrointestinal model. J Appl Microbiol. 2018; 124(2):423-430. doi:10.1111/jam.13659
51.     Umathe S, Bhutada P, Dixit P, Shende V. Increased marble-burying behavior in ethanol-withdrawal state: Modulation by gonadotropin-releasing hormone agonist. Eur J Pharmacol. 2008; 587(1-3):175-180. doi:10.1016/j.ejphar.2008.03.035
52.     Cojocariu SA, Maștaleru A, Sascău RA, Stătescu C, Mitu F, Leon-Constantin MM. Neuropsychiatric consequences of lipophilic beta-blockers. Med. 2021; 57(2):1-13. doi:10.3390/medicina57020155
53.     Zafir A, Banu N. Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol. 2007; 572(1):23-31. doi:10.1016/j.ejphar.2007.05.062
54.     Musk P. Magic shotgun methods for developing drugs for CNS disorders. Discov Med. 2004; 4(23):299-302.
55.     Kaplan A, Hollander E. A review of pharmacologic treatments for obsessive-compulsive disorder. Psychiatr Serv. 2003; 54(8):1111-1118. doi:10.1176/appi.ps.54.8.1111
56.     Goddard AW, Shekhar A, Whiteman AF, McDougle CJ. Serotoninergic mechanisms in the treatment of obsessive-compulsive disorder. Drug Discov Today. 2008; 13(7-8):325-332. doi:10.1016/j.drudis.2007.12.009
57.     Roberts C, Sahakian BJ, Robbins TW. Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev. 2020; 119:138-167. doi:10.1016/j.neubiorev.2020.09.001
58.     Walden RJ, Tomlinson B, Bhattacharjee P, Prichard BN. The beta-adrenergic blockade withdrawal phenomenon. J Pharmacol. 1983; 14 Suppl 2:35-48.
59.     Prichard BN, Walden RJ. The syndrome associated with the withdrawal of beta-adrenergic receptor blocking drugs. Br J Clin Pharmacol. 1982; 13(Suppl 2):337S-343S. doi:10.1111/j.1365-2125.1982.tb01938.x
60.     Uday G, Pravinkumar B, Manish W, Sudhir U. LHRH antagonist attenuates the effect of fluoxetine on marble-burying behavior in mice. Eur J Pharmacol. 2007; 563(1-3):155-159. doi:10.1016/j.ejphar.2007.02.016
61.     Borra SK, Mahendra J. Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J Med Plants Res. 2013; 7(36):2680-2690. doi:10.5897/JMPR2013.5094
62.     Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016; 44(D1):D457-62. doi:10.1093/nar/gkv1070
63.     Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017; 45(D1):D353-D361. doi:10.1093/nar/gkw1092
64.     Jankun J, Wyganowska-Swiatkowska M, Dettlaff K, et al. Determining whether curcumin degradation/condensation is actually bioactivation (Review). Int J Mol Med. 2016; 37(5):1151-1158. doi:10.3892/ijmm.2016.2524
65.     Cas MD, Ghidoni R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients. 2019; 11(9):1-14. doi:10.3390/nu11092147
66.     Zhen L, Zhu J, Zhao X, et al. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res. 2012; 228(2):359-366. doi:10.1016/j.bbr.2011.12.017
67.     Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009; 92(1):39-43. doi:10.1016/j.pbb.2008.10.007
68.     Yu ZF, Kong LD, Chen Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol. 2002; 83(1-2):161-165. doi:10.1016/S0378-8741(02)00211-8
69.     Finberg JPM. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther. 2014; 143(2):133-152. doi:10.1016/j.pharmthera.2014.02.010
70.     Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol. 2016; 7:340. doi:10.3389/fphar.2016.00340

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available