Author(s): Gul-e-Saba Chaudhry, Thirukanthan CS, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM

Email(s): gul.saba@umt.edu.my/sababiochem@gmail.com , effendy@umt.edu.my

DOI: 10.52711/0974-360X.2022.00515   

Address: Gul-e-Saba Chaudhry1*, Thirukanthan CS1, Nor Atikah Mohamed Zin1,Yeong Yik Sung1, Tengku Sifzizul Tengku Muhammad1, Effendy AWM1,2
1Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.
2Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022


ABSTRACT:
This study aimed to evaluate the antibacterial activity of chito-oligosaccharides (COS) from Tilapia fish scales. There is a massive potential in sustainably prospecting from these resources: algae, vertebrate, crustaceans, molluscs, residues from fish farms, and fisheries such as bones, skin, and fins, internal organs and non-bio-degradable substances such as scales—the production COS achieved by chemical hydrolysis involving demineralization, deproteinization and deacetylation. The antibacterial activities performed against Staphylococcus aureus, Bacillus cereus, Streptococcus agalactiea, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi. The bacteriostatic and bactericidal effect measured by taking Minimum Inhibitory Concentrations (MIC), and the Minimum Bactericidal Concentrations (MBC). Chitin yielded 32.74% from 100 grams of dried fish scales in this study, whereas Chito-oligosaccharides yielded 24.12% from 100 grams of chitin. The ratio of MBC/MIC determination reveals the bacteriostatic and bactericidal effect of a COS. The bactericidal properties were visible in COS. The potential antibacterial effect of COS obtained by Tilapia fish scales could be utilized for biomedical purposes such as wound healing.


Cite this article:
Gul-e-Saba Chaudhry, Thirukanthan CS, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM. Antibacterial activity of Chito-oligosaccharides derived from Fish Scales. Research Journal of Pharmacy and Technology. 2022; 15(7):3081-5. doi: 10.52711/0974-360X.2022.00515

Cite(Electronic):
Gul-e-Saba Chaudhry, Thirukanthan CS, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM. Antibacterial activity of Chito-oligosaccharides derived from Fish Scales. Research Journal of Pharmacy and Technology. 2022; 15(7):3081-5. doi: 10.52711/0974-360X.2022.00515   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-7-37


REFERENCES:
1.    Kerton FM, Liu Y, Omari KW, Hawboldt K. Green chemistry and the ocean-based biorefinery. Green Chem 2013;15: 860–871.
2.    Lopes C, Antelo LT, Franco-Uria A, Alonso AA, Perez-Martin R. Valorization of fish by-products against waste management treatments—Comparison of environmental impacts. Waste Manag 2015;46: 103–112. doi: 10.1016/j.wasman.2015.08.017
3.    Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling, et al. Microalgae biorefinery: High value products perspectives. Bioresour Technol 2017;229: 53–62. doi.org/10.1016/j.biortech.2017.01.0.06
4.    Ferraro V, Cruz IB, Jorge RF, Malcata FX, Pintado ME, et al. Valorization of natural extracts from marine source focused on marine by-products: A review Food Res Int 2010;43: 2221–2233. doi.org/10.1016/j.foodres.2010.07.034.
5.    Mona AEl-S, Mohamed MK, Mohamed AEl-R, Samir M. Osman, et al. Study of Antibacterial Activity of Some Plant Extracts Against Enterohemorrhagic Escherichia coli O157:H7. Research J Pharm and Tech 2013;6(8): 916-919. doi: 10.5958/0974-360X.
6.    Pooja K, Umakant, Gyanendra S. Synthesis and Antibacterial activity of some newer Benzimidazole derivatives. Research J Pharm and Tech 2020;13(6): 2597-2600. doi: 10.5958/0974-360X.
7.    Poojashree, Anitha R. In-vitro Antibacterial activity of Ethyl Acetate extract of Sesbania grandiflora leaf against E. faecalis – A root Canal threat. Research J. Pharm. and Tech 2016;9(12): 2147-2149. DOI: 10.5958/0974-360X.
8.    Disha MD, Shahare HV, Gedam SS, Bhoyar PK, Ganjiwale RO. Aging of Honey Enhances Its Antibacterial Activity. Research J Pharm and Tech 2009; 2 (4): 872-873. DOI: 10.5958/0974-360X.
9.    Reena K, Surjit S, Neha P, Shreta C, Loganathan K, et al. RSM Optimized Media to Increase the Antibacterial Activity of Wild and Mutated Strain of Nocardiopsis VITSRTB. Research J Pharm and Tech 2014;7(2): 213-220. DOI: 10.5958/0974-360X.
10.    Shruthi C, Geetha RV. Antibacterial Activity of the Three Essential Oils on Oral Pathogens- An In-vitro Study. Research J Pharm and Tech 2014 7(10):1128-1129. DOI: 10.5958/0974-360X.
11.    Aravind KS, Lakshmi T, Arun AV. Invitro Antibacterial Activity of Acacia catechu ethanolic leaf extract against selected acidogenic oral bacteria. Research J Pharm and Tech 2012;5(3): 333-336. DOI: 10.5958/0974-360X.
12.    Kanagavalli U, Mohamed SA, Sathishkumar, Rajeshkumar S. Plant Assisted Synthesis of Silver Nanoparticles Using Boerhaavia diffusa Leaves Extract and Evolution of Antibacterial Activity. Research J Pharm and Tech 2016;9(8): 1064-1068. DOI: 10.5958/0974-360X.
13.    Jobin J, Dhidhin R, Prashanth N. Microspheres - Novel Drug Delivery Carrier for Plant Extracts for Antibacterial Activity. Research J Pharm and Tech 2018;11(4): 1681-1684. DOI: 10.5958/0974-360X.
14.    Saravana K, Avijit M, Vanitha J, Ganesh M, Venkateshwaran K, et al. Antibacterial Activity of Methanolic Extract of Sesbania Grandiflora (Fabaceae). Research J Pharm and Tech 2008;1(1): 59-60. DOI: 10.5958/0974-360X.
15.    FAO The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations 2012.
16.    Nurdiyana H, SitiMazlina MK, SitiNor FM. Optimization of protein extraction from freeze dried fish waste using response surface methodology (RSM). Int J Eng Technol 2008;1: 48–56.
17.    Dhillon GS, Kaur S, Brar SK, Verma M. Green synthesis approach: extraction of chitosan from fungus mycelium. Crit Rev Biotechnol 2013;33: 379–403. doi: 10.3109/07388551.2012.717217.
18.    Chang KLB, Lee J, Fu WR. HPLC analysis of N-acetyl-chito-oligosaccharides during the acid hydrolysis of chitin. Journal of Food and Drug Analysis 2000;8(2): 75-83. doi.org/10.38212/2224-6614.2837.
19.    Qi L, Xu Z, Jiang X, Hu C, and Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 2014;339(16):2693–2700. doi.org/10.1016/j.carres.2004.09.007.
20.    Gnanamani A, Priya KS, Radhakrishnan N, Babu M. Antibacterial activity of two plant extracts on eight burn pathogens. J Ethnopharmacol 2003;86: 59-61. doi: 10.1016/s0378-8741(03)00044-8.
21.    Chung et al , Chung STL, Legge GE, Cheung SH. Letter recognition and reading speed in peripheral vision benefit from perceptual learning Vision Research 44;2004:695-709. doi: 10.1016/j.visres.2003.09.028.
22.    Raafat D, Sahl HG. Chitosan and its antimicrobial potential--a critical literature survey. Microb Biotechnol 2009;2(2): 186-201.
23.    Tsai, JL, Chentsova-Dutton Y, Friere-Bebeau L, & Przymus DE. Emotional expression and physiology in European Americans and Hmong Americans. Emotion 2002;2: 380-397. doi: 10.1037/1528-3542.2.4.380.
24.    Khan MM, Kalathil S, Lee J, Cho MH. Synthesis of cysteine capped silver nanoparticles by electrochemically active biofilm and their antibacterial activities Bull. Korean Chem Soc 201233(8): 2592-2596.
25.    Rabea EI, Badawy MET, Stevens CV, Smagghe G and Steurbaut W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4(6): 1457–1465. doi.org/10.1021/bm034130m.
26.    Lucas P, Muhammad N, Imran SM, Li B, Di B. Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomedicine & Pharmacotherapy. 2018;102: 438-451. doi: 10.1016/j.biopha.2018.03.108.
27.    Perveen S, Safdar N, Chaudhry GE, Yasmin A. Antibacterial evaluation of silver nanoparticles synthesized from lychee peel: individual versus antibiotic conjugated effects. World J Microbiol Biotechnol 2018 14;34(8): 118. DOI: 10.1007/s11274-018-2500-1.
28.    Raafat D, von , Haas K, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Applied Env Microbiol 2008;74(12): 3764–3773. doi: 10.1128/AEM.00453-08.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available