Author(s): Gul-e-Saba Chaudhry, Abdah Akim, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad

Email(s): gul.saba@umt.edu.my , sababiochem@gmail.com

DOI: 10.52711/0974-360X.2022.00481   

Address: Gul-e-Saba Chaudhry1*, Abdah Akim2, Yeong Yik Sung1, Tengku Sifzizul Tengku Muhammad1
1Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
2Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022


ABSTRACT:
Cancer faces significant problem in disease treatment. The conventional drug has the potential to kill cancer cells but its causes severe side effects. Due to nanotechnology advancements, various drug formulations are developed, which display a remarkable difference in the effectiveness of chemotherapeutics in cancer treatment. Various drug delivery systems showed potent drug release mechanisms that reduce the potential side effects of conventional drugs. The polymeric nanoparticles formulations can regulate the pharmacological properties of anticancer drug positively. The method of polymeric nanoparticle synthesis is utmost important as it deals with various physico-chemical properties of delivery system. These properties regulate the development of effective therapeutics in the treatment of cancer. The polymeric nanoparticle morphology and physiological characteristics, including drug release kinetics, should investigated thoroughly to minimize the potential disadvantages of the delivery system. The method of nanoparticles and drug release kinetics effectively up-regulate the possible use of future nanotherapeutics.


Cite this article:
Gul-e-Saba Chaudhry, Abdah Akim, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad. Polymeric Nanoparticles methods of preparation and Drug Release Models: Effectiveness towards Drug Delivery Systems. Research Journal of Pharmacy and Technology. 2022; 15(7):2883-7. doi: 10.52711/0974-360X.2022.00481

Cite(Electronic):
Gul-e-Saba Chaudhry, Abdah Akim, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad. Polymeric Nanoparticles methods of preparation and Drug Release Models: Effectiveness towards Drug Delivery Systems. Research Journal of Pharmacy and Technology. 2022; 15(7):2883-7. doi: 10.52711/0974-360X.2022.00481   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-7-3


REFERENCES:
1.    Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, et al. Colorectal Cancer Statistics. CA Cancer J Clin 2017; 67(3): 177-193. doi.org/10.3322/caac.21395.
2.    Chaudhry GS, Akim A, Zafar MN, Sung YY, Muhammad TST. Understanding HA-CD44 interaction, HA-CD44 activated potential targets in cancer progression and future therapeutics. Adv Pharm Bull Adv Pharm Bull 2021;11(3): 426-438. doi: 10.34172/apb.2021.050.
3.    Chaudhry GS, Jan R, Habsah M, Mohammad T.S.T (2019a). Vitex rotundifolia fractions induce apoptosis in the human breast cancer cell line, MCF-7, via extrinsic and intrinsic pathways. Res Pharma Sci;14(3): 273-285. doi: 10.4103/1735-5362.258496.
4.    Chaudhry GS, Akim A, Zafar MN, Sung YY, Muhammad TST. Understanding HA-CD44 interaction, HA-CD44 activated potential targets in cancer progression and future therapeutics. Adv Pharm Bull Adv Pharm Bull 2021;11(3): 426-438. doi: 10.34172/apb.2021.050.
5.    Gul-e-Saba, Abdah Akim, Hyaluronan-mediated CD44 Receptor Cancer Cells Progression and the Application of Controlled Drug-delivery System. Int J Curr Chem 2010;1(4): 245-265.
6.    Rahul Ashok Sachdeo, Manoj S. Charde, Ritu D. Chakole Colorectal Cancer: An Overview. Asian J Res Pharm Sci (2020); 10(3):211-223.
7.    Yunus U, Chaudhry GS, Sung YY, et al. Targeted Drug Delivery Systems: Synthesis and In-Vitro Bioactivity and Apoptosis Studies of Gemcitabine-Carbon Dots Conjugates Biomed Mater 2020;26(15(6): 065004. doi: 10.1088/1748-605X/ab95e1.
8.    Imran M, Rehman ZU, Hogarth G, Tocher DA, Chaudhry GS, et al. Two new monofunctional platinum(II) dithiocarbamate complexes: phenanthriplatin-type axial protection, equatorial-axial conformational isomerism, anticancer and DNA binding studies Dalton Transacrions. 2020;49: 15385-15396. doi.org/10.1039/D0DT03018J.
9.    Mahar J, Saeed A, Gul-e-Saba Chaudhry et al. (2020) Synthesis, characterization and cytotoxic studies of novel 1,2,4-triazole-azomethine conjugates. J Iran Chem Soc doi:10.1007/s13738-019-01826-9.
10.    Zafar MN, Masood S, Chaudhry GS, Muhammad TST, et al.  Synthesis, characterization and anti-cancer properties of water-soluble bis(PYE) pro-ligands and derived palladium(ii) complexes. Dalton Trans 2019;48: 15408-15418. doi.org/10.1039/C9DT01923E.
11.    Chaudhry GS, Rahman NH, Vigneswari S, Aziz A, et al. Cytotoxicity Effect and Cell Death Mechanism of Bruguiera gymnorrhiza Extracts on Human Breast Cancer Cell Line (MCF-7). J Adv Pharm Technol Res 2020;11(4): 233-237. doi: 10.4103/japtr.JAPTR_81_20.
12.    Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, et al. Xylocarpus moluccensis induces cytotoxicity in human hepatocellular carcinoma HepG2 cell line via activation of the extrinsic pathway. Asian Pac J Cancer Prev 2021;1;22(S1): 17-24. doi: 10.31557/APJCP.2021.22.S1.17.
13.    Gul-e-Saba Chaudhry, Zafar MN, Yeong Yik Sung, Muhammad TST Phytochemistry and Biological activity of Vitex rotundifolia L., Research J Pharm and Tech. 2020; 13(11):5534-5538. Chaudhry GE, Zafar MN, Yeong Yik Sung, Muhammad TST. Phytochemistry and Biological activity of Vitex rotundifolia L., Research J Pharm and Tech 2020;13(11): 5534-5538. doi: 10.5958/0974-360X.2020.00966.X.
14.    Chaudhry GE, Nur Khairina Ahmed Sohimi, Zafar MN, Habsah M, Yeong Yik Sung, Muhammad TST. Induction of apoptosis by selected Xylocarpus sp., fractions in the human cervical cancer cell line, HeLa. Int J Res Pharm Sci, 2020;11(2):  2332-2339. doi.org/10.26452/ijrps.v11i2.2210.
15.    Chaudhry GE, Murni NIK, Zafar MN, Habsah M, Yosie A, et al. Induction of apoptosis by Stichopus chloronotus and Holothuria nobilis fractions in human cervical cancer cell line, HeLa. Int J Res Pharm Sci, 2020;11(1): 1238-1247. doi.org/10.26452/ijrps.v11i1.1964.
16.    Chaudhry GE, Murni Islamiah, Muhammad Naveed Zafar, Habsah Mohamad, et al.  Induction of apoptosis by Acanthaster planci sp., and Diadema setosum sp., fractions in human cervical cancer cell line, HeLa 2021;1(22(5)):1365-1373. doi: 10.31557/APJCP.2021.22.5.1365.
17.    Chaudhry GS, Jan R, Habsah M, Mohammad T.S.T (2019a). Vitex rotundifolia fractions induce apoptosis in the human breast cancer cell line, MCF-7, via extrinsic and intrinsic pathways. Res Pharma Sci;14(3): 273-285. doi: 10.4103/1735-5362.258496.
18.    Chaudhry GS, Jan R, Zafar MN, Habsah M, Muhammad TST, (2019b). Vitex rotundifolia fractions induced apoptosis in human breast cancer T-47D cell line via activation of extrinsic and intrinsic pathway. Asian Pac J Cancer Prev 3555-3562.
19.    Gul-e-Saba, Murni Ismail, Noraznawati Ismail, Habsah, Tengku Sifzizul Tengku Muhammad. Induction of Apoptosis by Aaptos sp., fractions in human breast cancer. Int J Res Pharm Sci 20189(2), 328-237.
20.    Hudaya, T, Gul-e-Saba, Taib, M, Ismail, N, Mohammad, TST, 2017, Methanol extract of four selected marine sponges induces apoptosis in human breast cancer cell line, MCF-7. Int J Res Pharm Sci, 8(3), 667-675.
21.    Mohammed Shakir Ghouse. An Overview on plant derived Anticancer Drugs. Res. J. Pharmacognosy and Phytochem. 2020; 12(4):235-244. DOI: 10.5958/0975-4385.2020.00040.0.
22.    Sankaradoss Nirmala, P Nadana Sabapathi, M Sudhakar, Naveen Bathula, Y Sravanthi. Investigation of In vitro Anti-cancer property of Adhatoda vasica in Hela, HepG2, MCF-7, MDAMB-231 Cell Lines. Res. J. Pharmacognosy and Phytochem. 2019; 11(4):212-216. DOI: 10.5958/0975-4385.2019.00036.0.
23.    Avinash B Thalkari, Pawan N Karwa, Krushna K Zambare, Nagesh S Tour, Priyanka S Chopane. Paclitaxel Against Cancer: A new trademarked drug. Res. J. Pharmacognosy and Phytochem. 2019; 11(3):123-128. DOI: 10.5958/0975-4385.2019.00021.9.
24.    Orsu Prabhakar. Protective effect of Chrysin as Antioxidant, Anti-inflammatory and Anti apoptotic agent in Transient global cerebral Ischemia - Reperfusion injury among diabetic rats. Research Journal of Pharmacy and Technology. 2021; 14(4):2049-4. DOI: 10.52711/0974-360X.2021.00364.
25.    Farha Fatma, Anil Kumar. The Cell Cycle, Cyclins, Checkpoints and Cancer. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(2):175-3. DOI: 10.52711/2231-5659.2021-11-2-14.   
26.    Kushwah Pratibha, Mandloi Rampal, Pillai Sujit, Birla Nikhlesh, Sen Aayush. A Review on Role of Nanoparticles in Anticancer Drugs. Res. J. Pharmacognosy and Phytochem. 2020; 12(3):168-173. DOI: 10.5958/0975-4385.2020.00028.X.
27.    Rajendra Jangde. An Overview of Resealed Erythrocyte for Cancer Therapy. Asian J. Res. Pharm. Sci. 1(4): Oct.-Dec. 2011; Page 83-92.
28.    Kishore Uttam Kothule, Prashant Kesharwani, Suresh Kumar Gidwani, Paraag Gide. Development and Characterization of Chitosan Nanoparticles and Improvement of Oral Bioavailability of Poorly Water-Soluble Acyclovir. Research J. Pharm. and Tech.3 (4): Oct.-Dec.2010; Page 1241-1245.
29.    Thanki K, Gangwal RP, Sangamwar AT, Jain S.  Oral delivery of anticancer drugs : Challenges and opportunities. J Control Release 2013;170: 15-40. doi: 10.1016/j.jconrel.2013.04.020.
30.    Allen TM, Cullis PR. Drug Delivery Systems : Entering the Mainstream. Science 2003; 303(5665): 1818-1822.
31.    Gul-e-Saba, M.A.  Abdullah, Polymeric Nanoparticle mediated Targeted Drug Delivery to cancer cells. Biotechnology and Bioinformatics Advances and Applications for energy, Bioremediation and Biopharmaceutical Research Hard ISBN: 9781771880015. (2015) Apple Academic Press, New Jersey, USA.
32.    You Han Baea KP. Targeted drug delivery to tumours: Myths, reality and possibility. J Control Release 2012;153: 198-205. doi: 10.1016/j.jconrel.2011.06.001.
33.    Cosco D, Federico C, Maiuolo J, Bulotta S, Molinaro R, et al. Physicochemical features and transfection properties of chitosan/ poloxamer 188/poly (D, L-lactide-co-glycolide) nanoplexes. Int J Nanomed 2014;9: 2359–2372. doi: 10.2147/IJN.S58362. eCollection 2014.
34.    Cosco D, Mare R, Paolino D, Salvatici MC, Cilurzo F, Fresta M. Sclareol-loaded hyaluronan-coated PLGA nanoparticles: physico-chemical properties and in vitro anticancer features. Int J Biol Macromol 2019; 132: 550–557. doi: 10.1016/j.ijbiomac.2019.03.241.
35.    Gul-e-Saba Chaudhry PhD thesis.
36.    Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C; 2016; 60:569–578. doi.org/10.1016/j.msec.2015.11.067.
37.    Gul-e-Saba, A Abdah, MA Abdullah Synthesis, Characterization and Cytotoxicity of HA-PTX NPs on Cancer cell lines. J Adv Chem Eng 2014;4(1): 104.
38.    Chaudhry GS, Akim A, Zafar MN, Abdullah MA, Sung YY, Muhammad TST. Induction of Apoptosis and role of PTX loaded HA-crosslinked nanoparticle in the regulation of AKT and RhoA. J Adv Pharm Technol Res. 2020;11(3):101-106. doi: 10.4103/japtr.JAPTR_26_20.
39.    Rivas CJM, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, et al. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm 2017; 532: 66–81. doi.org/10.1016/j.ijpharm.2017.08.064.
40.    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, and Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989;55: R1. doi.org/10.1016/0378-5173(89)90281-0.
41.    Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharmaceut J 2014;22 :219–222. DOI:10.1016/j.jsps.2013.12.002.
42.    Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, and Jelvehgari M Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci 2017;12: 1–14. doi: 10.4103/1735-5362.199041.
43.    Ibrahim H, Bindschaedler C, Doelker E, Buri P, Gurny R. Aqueous nanodispersions prepared by a salting-out process. Int J Pharm 1992;87: 239- 46. doi.org/10.1016/0378-5173(92)90248-Z.
44.    Hixson AW and Crowell JH. Dependence of reaction velocity upon surface and agitation (I) theoretical consideration. Ind Eng Chem 1931;23: 923-931. doi.org/10.1021/ie50260a018.
45.    Korsmeyer RW, Gurny R, Doelker E, Buri P and Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 1983;15: 25-35. doi.org/10.1016/0378-5173(83)90064-9.
46.    Korsmeyer RW, Lustig SR and Peppas NA (1986a). Solute nd penetrant diffusion in swellable polymers. I. Mathematical modeling. J Polym Sci Polym Phys; 24: 395-408. doi.org/10.1002/polb.1986.090240214.
47.    Korsmeyer RW, von-Meerwall E and Peppas NA. Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. J Polym Sci Polym 1986b; 24: 409-434. doi.org/10.1016/0168-3659(86)90097-0.
48.    Shoib MH, Tazeen J, Merchant HA, Yousuf RI. Evalution of drug release kinetics from ibuprofen matrix tablets using HPMC. J Pharm Sci 2006;19(2): 119-124.
49.    Lekshmi U.M.D, Poovi G, Reddy PN. Invitro observation of repanglinide engineered polymeric nanoparticles. Digest J Nanomater Biostructures 2012; 7(1): 1 – 18.
50.    Poovi G, Dhanalekshmi UM, Narayanan N. Res J Nanosci Nanotech 2010;1: 1-13.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available