Author(s): Ghasak H Jani, Abdalbseet A Fatalla

Email(s): dr.ghasak@ codental.uobaghdad.edu.iq , abdalbasit@codental.uobaghdad.edu.iq

DOI: 10.52711/0974-360X.2022.00507   

Address: Ghasak H Jani1, Abdalbseet A Fatalla2
1Assistant Professor, Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq.
2Professor, Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022


ABSTRACT:
Polymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength, Fourier Transform Infrared analysis FTIR, and wettability. The results obtained from the experiments showed slight increase in tensile strength of the polymer composite consisting from polyetherketoneketone and strontium hydroxaptatite nanofiller compared with pure Polyetherketoneketone, with increase the in concentration of Polyetherketoneketone composite (concentration 10%, 20%, 30%), improvement in the wettability value, with no effect in the chemical structure of Polyetherketoneketone composite comparing with the PEKK composite.


Cite this article:
Ghasak H Jani, Abdalbseet A Fatalla. Characterization and Testing the properties of PEKK- Strontium- hydroxyapatite composite material. Research Journal of Pharmacy and Technology. 2022; 15(7):3034-0. doi: 10.52711/0974-360X.2022.00507

Cite(Electronic):
Ghasak H Jani, Abdalbseet A Fatalla. Characterization and Testing the properties of PEKK- Strontium- hydroxyapatite composite material. Research Journal of Pharmacy and Technology. 2022; 15(7):3034-0. doi: 10.52711/0974-360X.2022.00507   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-7-29


REFERENCE:
1.    Baskar S. The accuracy of implant impressions: A systematic review. Research Journal of Pharmacy and Technology. 2017;10(3):896-902. doi: 10.5958/0974-360X.2017.00167.6
2.    Sripradha S, Pandian S. Mini Implants in Orthodontics-A Review. Research Journal of Pharmacy and Technology. 2018;11(6):2621-2624. doi: 10.5958/0974-360X.2018.00486.9
3.    Xu X, He L, Zhu B, et al. Advances in polymeric materials for dental applications. Polymer Chemistry. 2017;8(5):807-823. DOI https://doi.org/10.1039/C6PY01957A
4.    Rokaya D, Srimaneepong V, Sapkota J, et al. Polymeric materials and films in dentistry: An overview. Journal of advanced research. 2018;14:25-34. https://doi.org/10.1016/j.jare.2018.05.001
5.    Jani GH, Fatalla AA. Corrosion behavior of implant coated with different biocompatible material. Research Journal of Pharmacy and Technology. 2020;13(2):810-814. doi: 10.5958/0974-360X.2020.00152.3
6.    Varsha L. Recent Advances in Preventive Resin Restoration (PRR). Research Journal of Pharmacy and Technology. 2019;12(1):382-384. doi: 10.5958/0974-360X.2019.00069.6
7.    Najeeb S, Zafar MS, Khurshid Z, et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of prosthodontic research. 2016;60(1):12-19. DOI: 10.1016/j.jpor.2015.10.001
8.    Harsha L, Anand S. Literature review on “Peek” dental implants. Research Journal of Pharmacy and Technology. 2016;9(10):1797-1801. doi: 10.5958/0974-360X.2016.00364.4
9.    Jani GH, Al-Ameer SS, Jawad SN. Histological and histomorphometric analysis of strontium chloride coated commercially pure titanium implant compared with hydroxyapatite coating. Journal of baghdad college of dentistry. 2015;27(1):26-31.
10.    Huang B, Qian J, Wang G, et al. Synthesis and properties of novel copolymers of poly (ether ketone diphenyl ketone ether ketone ketone) and poly (ether amide ether amide ether ketone ketone). Polymer Engineering and Science. 2014;54(8):1757-1764. DOI:10.1002/pen.23721
11.    Stawarczyk B, Eichberger M, Uhrenbacher J, et al. Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types. Dental materials journal. 2015;34(1):7-12. DOI: 10.4012/dmj.2013-345
12.    Patel P, Hull TR, McCabe RW, et al. Mechanism of thermal decomposition of poly (ether ether ketone)(PEEK) from a review of decomposition studies. Polymer Degradation and Stability. 2010;95(5):709-718. https://doi.org/10.1016/j.polymdegradstab.2010.01.024
13.    Blundell DJ, Osborn B. The morphology of poly (aryl-ether-ether-ketone). Polymer. 1983;24(8):953-958. DOI:10.1016/0032-3861(83)90144-1
14.    Tamburrino F, Barone S, Paoli A, et al. Post-processing treatments to enhance additively manufactured polymeric parts: a review. Virtual and Physical Prototyping. 2021;16(2):221-254. https://doi.org/10.1080/17452759.2021.1917039
15.    De Lima TAdM, de Lima GG, Nugent MJ. Natural Fibre-Reinforced Polymer Composites: Manufacturing and Biomedical Applications. Polymeric and Natural Composites: Springer 2022:25-63. DOI: https://doi.org/10.14416/j.asep.2021.09.005
16.    Mohammed SS, Omsankar NB. Formulation Development and Evaluation Bilayer Floating Sustained and Immediate Release Tablet of Verapamil Hydrochloride by Direct Compression Method. Magnesium. 2015;2(2):2. doi: 10.5958/0974-360X.2015.00090.6
17.    Yu S, Hariram KP, Kumar R, et al. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials. 2005;26(15):2343-2352. DOI: 10.1016/j.biomaterials.2004.07.028
18.    Converse GL, Yue W, Roeder RK. Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone. Biomaterials. 2007;28(6):927-935. DOI: 10.1016/j.biomaterials.2006.10.031
19.    Nielsen SP. The biological role of strontium. Bone. 2004;35(3):583-588. doi: 10.1016/j.bone.2004.04.026
20.    Rizzoli R. A new treatment for post-menopausal osteoporosis: strontium ranelate. Journal of endocrinological investigation. 2005;28(8 Suppl):50-57. DOI: 10.1007/s11914-005-0025-7
21.    Mythili K, Gayatri S, Kumar EM, et al. Development and validation of UV spectrophotometric method for the estimation of strontium ranelate in sachet formulation. Research Journal of Pharmacy and Technology. 2011;4(9):1468-1470. https://rjptonline.org/AbstractView.aspx?PID=2011-4-9-19
22.    Guo D, Xu K, Zhao X, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials. 2005;26(19):4073-4083. DOI: 10.1016/j.biomaterials.2004.10.032
23.    Li Y, Leong J, Lu W, et al. A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. Journal of biomedical materials research. 2000;52(1):164-170. DOI: 10.1002/1097-4636(200010)52:1<164::aid-jbm21>3.0.co;2-r
24.    Wong C, Lu W, Chan W, et al. In vivo cancellous bone remodeling on a strontium‐containing hydroxyapatite (sr‐HA) bioactive cement. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2004;68(3):513-521. DOI: 10.1002/jbm.a.20089
25.    Ni G, Lu W, Chiu K, et al. Strontium‐containing hydroxyapatite (Sr‐HA) bioactive cement for primary hip replacement: An in vivo study. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;77(2):409-415. DOI: 10.1016/j.biomaterials.2006.03.048
26.    Cheung KM, Lu WW, Luk KD, et al. Vertebroplasty by use of a strontium-containing bioactive bone cement. Spine. 2005;30(17S):S84-S91. DOI: 10.1097/01.brs.0000175183.57733.e5
27.    Girija C, Sivakumar M. Amalgamation and Characterization of Hydroxyapatite Powders from Eggshell for Functional Biomedical Application. Research Journal of Pharmacy and Technology. 2018;11(10):4242-4244. doi: 10.5958/0974-360X.2018.00777.1
28.    Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 2019;21 Suppl 1:4-7 DOI: 10.1111/cid.12742.
29.    Patel PA, Chaulang G, Akolkotkar A, et al. Self emulsifying drug delivery system: a review. Research Journal of Pharmacy and Technology. 2008;1(4):313-323. https://rjptonline.org/AbstractView.aspx?PID=2008-1-4-59
30.    Jani GH, Fatalla AA. Surface Characterization of PEKK Modified by stron-tium–hydroxyapatite coating as implant material Via the magnetron sputtering Deposition technique. Journal of Baghdad College of Dentistry. 2022;34(2):25-36.DOI: https://doi.org/10.26477/jbcd.v34i2.3143
31.    Capuccini C, Torricelli P, Boanini E, et al. Interaction of Sr‐doped hydroxyapatite nanocrystals with osteoclast and osteoblast‐like cells. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2009;89(3):594-600. DOI: 10.1002/jbm.a.31975
32.    Xue W, Hosick HL, Bandyopadhyay A, et al. Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surface and Coatings technology. 2007;201(8):4685-4693. DOI10.1016/j.surfcoat.2006.10.012
33.    Oliveira A, Reis R, Li P. Strontium‐substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2007;83(1):258-265. DOI: 10.1002/jbm.b.30791
34.    Moursi AM, Winnard AV, Winnard PL, et al. Enhanced osteoblast response to a polymethylmethacrylate–hydroxyapatite composite. Biomaterials. 2002;23(1):133-144. DOI: 10.1016/s0142-9612(01)00088-6
35.    Najeeb S, Khurshid Z, Matinlinna JP, et al. Nanomodified peek dental implants: Bioactive composites and surface modification—A review. International journal of dentistry. 2015;2015. https://doi.org/10.1155/2015/381759
36.    Hussein AA. Fabrication and Characterization of Advanced Blend Polymer Nanocomposites for Human Bone Structural Applications. Ph. D. Thesis 2017.
37.    Huhtamäki T, Tian X, Korhonen JT, et al. Surface-wetting characterization using contact-angle measurements. Nature protocols. 2018;13(7):1521-1538. DOI: 10.1038/s41596-018-0003-z
38.    Testing ASf, Materials. Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens: ASTM International 2018.
39.    Verma G, Shetake NG, Pandrekar S, et al. Development of surface functionalized hydroxyapatite nanoparticles for enhanced specificity towards tumor cells. European Journal of Pharmaceutical Sciences. 2020;144:105206. DOI: 10.1016/j.ejps.2019.105206
40.    Saraswathi K, Sivaraj C, Jenifer A, et al. Antioxidant, Antibacterial activities, GCMS and FTIR Analysis of Ethanol bark extract of Capparis sepiaria L. Research Journal of Pharmacy and Technology. 2020;13(5):2144-2150. DOI: 10.5958/0974-360X.2020.00385.6
41.    Deng Y, Zhou P, Liu X, et al. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids and Surfaces B: Biointerfaces. 2015;136:64-73. DOI: 10.1016/j.colsurfb.2015.09.001
42.    Fatarella E, Mylläri V, Ruzzante M, et al. Sulfonated polyetheretherketone/polypropylene polymer blends for the production of photoactive materials. Journal of Applied Polymer Science. 2015;132(8). DOI:10.1002/app.41509
43.    Jin Y, Bian C, Zhang Z, et al. Preparation and characterization of bio-composite PEEK/nHA. IOP Conference Series: Materials Science and Engineering: IOP Publishing 2017:012006. DOI:10.1088/1757-899X/167/1/012006
44.    Kamath V, Mukherjee P, Swapna B, et al. Nanodentistry: Present and future. Research Journal of Pharmacy and Technology. 2021;14(7):3976-3980. DOI: 10.52711/0974-360X.2021.00689
45.    Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. Journal of the American Chemical Society. 2005;127(22):8168-8173. https://doi.org/10.1021/ja042898o
46.    Faucheux N, Schweiss R, Lützow K, et al. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials. 2004;25(14):2721-2730. DOI: 10.1016/j.biomaterials.2003.09.069
47.    Lim JY, Hansen JC, Siedlecki CA, et al. Osteoblast adhesion on poly (L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability. Biomacromolecules. 2005;6(6):3319-3327. DOI: 10.1021/bm0503423
48.    Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2005;74(1):49-58. DOI: 10.1002/jbm.a.30320
49.    Rupp F, Scheideler L, Olshanska N, et al. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;76(2):323-334. DOI: 10.1002/jbm.a.31044
50.    Zhong W, Huang Y, Gan D, et al. Wetting behavior of water on silicon carbide polar surfaces. Physical Chemistry Chemical Physics. 2016;18(40):28033-28039. DOI https://doi.org/10.1039/C6CP04686J
51.    Terpiłowski K, Wiącek AE, Jurak M. Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Advances in Polymer Technology. 2018;37(6):1557-1569. https://doi.org/10.3390/ijms22168455
52.    Thostenson ET, Chou T-W. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. Journal of physics D: Applied physics. 2002;35(16):L77. DOI:10.1088/0022-3727/35/16/103
53.    Hemashree T, Prasunna SG, Sakthiselvan P. Synthesis of Keratin Nanoparticle and Characterization using FTIR. Research Journal of Pharmacy and Technology. 2019;12(6):2664-2668. DOI: 10.5958/0974-360X.2019.00445.1
54.    Pope JC, Sue H-J, Bremner T, et al. High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid-state NMR study. Polymer. 2014;55(18):4577-4585. DOI10.1016/j.polymer.2014.07.027
55.    Puertas-Bartolomé M, Dose ME, Bosch P, et al. Aromatic poly (ether ether ketone) s capable of crosslinking via UV irradiation to improve gas separation performance. RSC advances. 2017;7(87):55371-55381. DOI https://doi.org/10.1039/C7RA11018A
56.    James SP, Zhang M, Schwartz H. UHMWPE/hyaluronan microcomposite biomaterials. UHMWPE Biomaterials Handbook: Elsevier 2009:259-276.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available