Author(s): Amr A. El-Waseif, Gehad S. Awad, Sabah A. Abo El maaty, Mervat G. Hassan

Email(s): amrelwaseif@azhar.edu.eg

DOI: 10.52711/0974-360X.2022.00493   

Address: Amr A. El-Waseif1*, Gehad S. Awad2, Sabah A. Abo El maaty2, Mervat G. Hassan2
1Botany and Microbiology Dept., Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
2Botany and Microbiology Dept., Faculty of Science, Banha University, Egypt.
*Corresponding Author

Published In:   Volume - 15,      Issue - 7,     Year - 2022


ABSTRACT:
Escherichia coli is a part of human intestinal flora and considered the second most common death factor between children younger than five years. Escherichia coli Shiga-like, Heat-labile toxins and multidrug-resistant are important virulence factors. Therefore, the main targets of this work were molecular diagnosis and characterization of toxine genes Shiga-like and Heat-labile and resistance genes of ciprofloxacin and gentamicin on molecular basis for Escherichia coli isolated from children stool sample in Egypt. The gene detection was carried out using two different approaches which were using chromosome and plasmid. Escherichia coli isolates were resistant to 24 antibiotics including four categories based on their functions. For example, ciprofloxacin, gentamicin, novobiocin and vancomycin. All of tested strains showed band near 300 bp that represents of shiga-like toxin (SLT) gene in their genomic DNA. Heat-labile toxin (LT) fragment ~ 200 bp was detected in plasmid of strain 8H and 8G. Moreover, gentamycin resistance fragment (aac C2) was detected in chromosomal DNA of all strains as a single robust fragment of molecular weight ~ 856 bp. In the case of ciprofloxacin-resistance gene a slight amplification was detected in strain 8G as well as 8H at about 1 kb and 800 bp in genomic, while it was absent in plasmids of tested strains.


Cite this article:
Amr A. El-Waseif, Gehad S. Awad, Sabah A. Abo El maaty, Mervat G. Hassan. Molecular characterization of Virulence genes Shiga-like, Heat-labile Toxins and Antibiotics resistance in multidrug-resistant Escherichia coli. Research Journal of Pharmacy and Technology. 2022; 15(7):2957-1. doi: 10.52711/0974-360X.2022.00493

Cite(Electronic):
Amr A. El-Waseif, Gehad S. Awad, Sabah A. Abo El maaty, Mervat G. Hassan. Molecular characterization of Virulence genes Shiga-like, Heat-labile Toxins and Antibiotics resistance in multidrug-resistant Escherichia coli. Research Journal of Pharmacy and Technology. 2022; 15(7):2957-1. doi: 10.52711/0974-360X.2022.00493   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-7-15


REFERENCES:
1.    Kotloff K, Nataro J, Blackwelder W, Nasrin D, Farag T, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young childrenin developing countries (the Global Enteric Multicenter Study, GEMS): aprospective, case-control study. Lancet, 2013; 382: 209–222.
2.    Deepika V., Gopinath. P. Detection of Pap C gene for the presence of Adhesive Pili among clinical Isolates of E. coli. Research J. Pharm. and Tech 2016; 9(12):2183-2185. doi: 10.5958/0974-360X.2016.00442.X
3.    Hu J, Shi J, Chang H, Li D, Yang M, Kamagata Y. Phenotyping and genotyping of antibiotic-resistant Escherichia coli isolated from a natural river basin. Environ. Sci. Technol, 2008; 42 (9): 3415–3420.
4.    Rene Jochebed. S, P. Gopinath. Detection of blaNDM-1gene for the production of MBL among Clinical Strains of Escherichia coli. Research J. Pharm. and Tech 2016; 9(11): 1855-1857. doi: 10.5958/0974-360X.2016.00378.4
5.    Rajesh KS, Honey VS, Ullas Prakash D’souza, Ragava Sharma, Bharath Raj KC. Study of Antibiotic resistance pattern in uropathogens at a Tertiary Care Hospital. Research J. Pharm. and Tech 2020; 13(3): 1253-1256. doi: 10.5958/0974-360X.2020.00231.0
6.    Hemeg H.  Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi Journal of Biological Sciences, 2018; 25: 928–931.
7.    Sharmal Kumar M., N. Arunagirinathan, M. Ravikumar. Antibiotic susceptibility profile of extended spectrum β-lactamase producing Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca from Urinary tract infections. Research Journal of Pharmacy and Technology. 2021; 14(8):4425-8. doi: 10.52711/0974-360X.2021.00768
8.    Ghaidaa J. Mohammed, Mohammed S. Abdul-Razaq. Grouping and Revelation the significant Virulence genes of Escherichia coli isolated from Patients with Urinary Tract Infections . Research J. Pharm. and Tech 2018; 11(12): 5483-5489. doi: 10.5958/0974-360X.2018.00999.X
9.    Johnson T, Nolan L. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev, 2009; 73: 750–774.
10.    Anima N., Dhamodharan S, Nayak B. K.. Antibiotic Resistance Pattern Exhibited by Esbl (Extended Spectrum β-Lactamases) in Multidrug Resistant Strains, Escherichia coli. Research J. Pharm. and Tech 2017; 10(11): 3705-3708. doi: 10.5958/0974-360X.2017.00672.2
11.    Abbas H. A., Ashraf A. Kadry, Ghada H. Shaker, Reham M. Goda. Resistance of Escherichia coli and Klebsiella pneumoniae isolated from different Sources to β-lactam Antibiotics. Research J. Pharm. and Tech. 2017; 10(2): 589-591. doi: 10.5958/0974-360X.2017.00116.0
12.    Yuvaraj S., Gopinath P. Detection of Iut-A Gene for the presence of Siderophore Protein among Clinical isolates of Escherichia coli. Research J. Pharm. and Tech 2016; 9(10):1591-1592. doi: 10.5958/0974-360X.2016.00314.0
13.    Padavala S., Gopinath P. Detection of neuC gene for the presence of capsular polysaccharide among the clinical isolates of Escherichia coli. Research J. Pharm. and Tech 2016; 9(9):1454-1456. doi: 10.5958/0974-360X.2016.00281.X
14.    Ukah U, Glass M, Avery B, Daignault D, Mulvey M, Reid-Smith R, Parmley E, Portt A, Boerlin P, Manges A. Risk factors for acquisition of multidrug-resistant Escherichia coli and development of community-acquired urinary tract infections. Epidemiol. Infect, 2018; 146 (1): 46–57.
15.    Danalakshmi J., Gopinath P. Detection of Fimh Gene for Fimbrial Mediated Adhesion Antigen in Clinical isolates of Escherichia coli. Research J. Pharm. and Tech 2016; 9(9):1427-1429. doi: 10.5958/0974-360X.2016.00275.4
16.    Taylor N, Davies R, Ridley A, Clouting C, Wales A, Clifton-Hadley F. A survey of fluoroquinolone resistance in Escherichia coli and thermophilic Campylobacter spp. on poultry and pig farms in Great Britain. J. Appl. Microbiol, 2008; 105: 1421–1431.
17.    Cetinkaya F, Mus T, Yibar A, Guclu N, Tavsanli H, Cibik R. Prevalence serotype identification by multiplex polymerase chain reaction and antimicrobial resistance patterns of Listeria monocytogenes isolated from retail foods. J. Food Saf, 2014; 34: 42–49.
18.    Suardana I. Analysis of nucleotide sequences of the 16S rRNA gene of novel Escherichia coli strains isolated from feces of human and Bali cattle. J. Nucleic Acids, 2014; Article ID 475754.
19.    Humphries R, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K, Hardy D, Zimmer B, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol, 2018; 56: 1917-1934.
20.    Wayne P,. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. 2013; M100-S23.
21.    Murphy G,  Dallas W.  Analysis of two genes encoding heat-labile toxins and located on a single Ent plasmid from Escherichia coli. Gene, 1991;103 (1): 37-43.
22.    Amania J, Ahmadpoura A, Fooladia A, Nazarianb S. Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA. The Brazilian Journal of Infectious Diseases, 2015; 19(3): 278–284.
23.    Kumar A, Taneja N, Kumar Y, et al. Detection of shiga toxin variants among shiga toxin-forming Escherichia coli isolates from animal stool, meat and human stool samples in India. J Appl Microbiol, 2012; 113:1208–1216.
24.    Srinivasan V, Gillespie B, Lewis M, Nguyen L, Headrick S, Schukken Y, Oliver S. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet. Microbiol, 2007; 124(3): 319-328.
25.    Tavakoli M, Pourtaghi H. Molecular detection of virulence genes and multidrug resistance patterns in Escherichia coli (STEC) in clinical bovine mastitis: Alborz Province, Iran. Iran J. Vet. Res, 2017; 18(3): 208-211.
26.    Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev, 2010; 74(3): 417-433.
27.    Ismail Z, Abutarbush S. Molecular characterization of antimicrobial resistance and virulence genes of Escherichia coli isolates from bovine mastitis. Veterinary World, 2020; 13(8): 1588-1593.
28.    Ho P, Yip K, Chow K, Lo J, Que T, Yuen K. Antimicrobial resistance among uropathogens that cause acute uncomplicated cystitis in women in Hong Kong: a prospective multicenter study in 2006 to 2008. Diagn. Microbiol. Infect. Dis, 2009; 66: 87–93.
29.    Rubab M, Oh D. Virulence Characteristics and Antibiotic Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Diverse Sources. Antibiotics, 2020; 9: 587-602.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available