Author(s): Nasrina Abdin, Bhanu Pratap Sahu, Sheikh Sofiur Rahman


DOI: 10.52711/0974-360X.2022.00476   

Address: Nasrina Abdin*, Bhanu Pratap Sahu, Sheikh Sofiur Rahman
Department of Pharmaceutics, Girijananda Chowdury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India. Pin code: 781017.
*Corresponding Author

Published In:   Volume - 15,      Issue - 6,     Year - 2022

Cancer is the second leading cause of death in the world and one of the major public health problems. Despite the great advances in cancer therapy, the incidence and mortality rates of cancer remain high. Therefore, the goal for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Despite these efforts, cancer drug research remains a remarkably challenging field, and therapeutic innovations have not yet achieved expected clinical results. However, the physiopathology of the disease is now better understood, and the discovery of novel molecular targets has refreshed the expectations of developing improved treatments. Paclitaxel (PCT) is a chemotherapeutic agent used as a first-line treatment for a wide range of cancers, such as lung, ovarian, breast, prostate, head, and neck cancers, and AIDS-related Kaposi sarcoma. Currently, the marketed forms of Paclitaxel are intravenous formulations. Oral administration of Paclitaxel is unfortunately hampered due to its low bioavailability. This is explained by its low aqueous solubility, low permeability, high affinity for cytochrome P450 and P-glycoprotein. As another approach, drug carrier systems are extensively studied to enhance oral Paclitaxel bioavailability and reduce side effects. The niosomes provides several important advantages over conventional drug therapy. Structurally, niosomes are similar to liposomes, in that they are also made up of a bilayer. However, the bilayer in the case of niosomes is made up of non-ionic surface-active agents rather than phospholipids as seen in case of liposomes. Niosome nanoparticles are among these drug delivery systems, which have numerous applications in drug delivery and targeting. Niosomes are frequently used for loading drugs serving different purposes (e.g., anticancer, antiviral, and antibacterial agents). The aim of this review is to evaluate the extent of nanotherapeutics used in anti-cancer activity.

Cite this article:
Nasrina Abdin, Bhanu Pratap Sahu, Sheikh Sofiur Rahman. A Review on Formulation and Evaluation of Nanoniosomal Topical gel of Paclitaxel for skin cancer. Research Journal of Pharmacy and Technology. 2022; 15(6):2849-4. doi: 10.52711/0974-360X.2022.00476

Nasrina Abdin, Bhanu Pratap Sahu, Sheikh Sofiur Rahman. A Review on Formulation and Evaluation of Nanoniosomal Topical gel of Paclitaxel for skin cancer. Research Journal of Pharmacy and Technology. 2022; 15(6):2849-4. doi: 10.52711/0974-360X.2022.00476   Available on:

1.    Roger Walker, Clive Edwards. Cancer disease. In Roger Walker, The Textbook of Clinical pharmacy and Therapeutics, Third Edition. New Delhi, Jaypee Brothers Medical Publishers [P] Ltd. 2003; 265-353.
2.    Peppa LB, Blanchette JO. Nanoparticle and targeted system for cancer therapy. Adv Drug Deliv Rev. 2004; 56: 1649-1659.
3.    Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochem Biophys Acta. 1995; 1233: 134-144.
4.    Katragadda U, Fan W, Wang Y, Teng Q, Tan C. Combined delivery of Paclitaxel and Tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. 2013; 8(3): e58619.
5.    Jang SH, Wientjes MG, Au JLS. Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: effect of treatment schedule. J Pharmacol Exp Ther. 2001; 296: 1035-1042
6.    Kumar A. Leishmania and leishmaniasis. New York: Springer; 2013.
7.    Barakat HS, Kassem MA, El-Khordagui LK, et al. Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces. AAPS Pharm Sci Tech. 2014; 15: 1263-1274.
8.    Guan L, Liu X, Xiao F, et al. Characterization of elastic niosomes prepared with various nonionic surfactants for lidocaine hydrochloride transdermal delivery. Nanosci Nanotechnol Lett. 2016; 8: 1033-1039.
9.    Shaker DS, Shaker MA, Hanafy MS. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. Int J Pharm. 2015; 493: 285-294.
10.    Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010; 99(4): 2049-2060.
11.    Mukherjee B, Patra B, Layek B, Mukherjee A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: an in vitro study. Int J Nanomedicine. 2007; 2(2): 213-225.
12.    Fang JY, Hong CT, Chiu WT, Wang YY. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001; 219(1-2): 61-72.
13.    Abdelbary G, El-gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS Pharm Sci Tech. 2008; 9(3):740-747.
14.    F. Alexis, et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol. Pharm. 2008; 5(4): 505-515.
15.    L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev. 2004; 56(11): 1649-1659. DOI: 10.1016/j.addr.2004.02.014
16.    Rajeshkumar S, Nagalingam, Ponnanikajamideen M, Vanaja M, Malarkodi C, Sinha R, Anderson DE, McDonald SS, Greenwald P. Cancer Risk and Diet in India. J Postgrad Med. 2003; 49: 222-228.
17.    International Agency for Research on Cancer, World Health Organization. Available from: PRGlobocanFinal.pdf, 2-3, 2018 (18 November 2019).
18.    Dange VN, Shid SJ, Dr. Magdum CS, Mohite SK. A Review on Breast cancer: An Overview. Asian Journal of Pharmaceutical Research. 2017; 7(1): 49-51.
19.    Patidar A, Shivhare SC, Ateneriya U, Choudhary S. A Comprehensive Review on Breast Cancer. Asian Journal of Nursing Education and Research. 2012; 2(1): 28-32. DOI Not available
20.    Siswandono and Soekardjo, B. Medicinal Chemistry, book 1, Airlangga University Press, Indonesia. 2008; 2nd ed: pp. 255-288, 304-305.
21.    Ilic M, Ilic I. Epidemiology of pancreatic cancer. World Journal of Gastroenterology. 2016;22(44): 9694. DOI: 10.3748/wjg.v22.i44.9694
22.    Bansal J, Bansal M, Gupta B. Ranking of Indian Universities in Social Sciences: A Scientometric Analysis. SRELS Journal of Information Management. 2018;55(5): 254-64.
23.    Lowenfels A, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Practice & Research Clinical Gastroenterology. 2006;20(2):197-209. DOI: 10.1016/j.bpg.2005.10.001
24.    Silverman D, Schiffman M, Everhart J, Goldstein A, Lillemoe K, Swanson G et al. Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer. British Journal of Cancer. 1999;80(11): 1830-37. DOI: 10.1038/sj.bjc.6690607
25.    Fernandez E, La vecchia C, D'dvanzo B, Braga C, Negri E, Franceschi S. European Journal of Epidemiology. 1997;13(3): 267-73.
26.    Sinha R, Anderson DE, McDonald SS, Greenwald P. Cancer Risk and Diet in India. J
1.    Post grad Med. 2003; 222-228.
27.    Imran Ali, Waseem A. Wani and Kishwar Saleem. Cancer Scenario in India with Future Perspectives. Cancer Therapy. 2011; 8: 56-70.
28.    Radha Sharma, Suman Jain. Cancer Treatment: An Overview of Herbal Medicines. World Journal of Pharmacy and Pharmaceutical Sciences. 2014; 3: 224.
29.    J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, UV radiation and the skin, International Journal of Molecular Sciences, vol. 14, no. 6, pp. 12222–12248, 2013.
30.    M. C. F. Simoes, J. J. S. Sousa, and A. A. C. C. Pais, Skin cancer and new treatment perspectives: a review, Cancer Letters, vol. 357, no. 1, pp. 8-42, 2015. DOI: 10.1016/j.canlet.2014.11.001
31.    Leiter U, Garbe C. Medical Center University of California, Nonmelanoma Skin Cancer vs. Melanoma, Adv Exp Med Biol. 624:89-103, 2007. DOI: 10.1007/978-0-387-77574-6_8
32.    J. S. Rhee, B. A. Matthews, M. Neuburg, B. R. Logan, M. Burzynski, and A. B. Nattinger, “The skin cancer index: clinical responsiveness and predictors of quality of life,” The Laryngoscope, vol. 117, no. 3, pp. 399–405, 2007. DOI: 10.1097/MLG.0b013e31802e2d88
33.    S. Sachdeva, “Fitzpatrick skin typing: applications in dermatology,” Indian Journal of Dermatology, Venereology and Leprology, vol. 75, no. 1, pp. 93-96, 2009. DOI: 10.4103/0378-6323.45238
34.    Slora, “Maligni melanom (C43): Slora,” 2016, http://www.slora .si/c/document library/get file?uuid=c2e610c7-5353-40dd-93e9- 1b1b2320e3e1&groupId=11561.
35.    Onkoloˇski Inˇstitut Ljubljana, Rak v Sloveniji 2012, Edited by M. Zakelj Primic, Onkolo ˇ ˇski inˇstitut Ljubljana, Epidemiologija in Register Raka, Register Raka Republike Slovenije, Ljubljana, Slovenia, 2015
36.    Mou X. Cancer prevention by astaxanthin, a natural carotenoid. Journal of Kyoto Prefectural University of Medicine. 2005; 114: 21-29.
37.    Kohn EC, Sarosy G, Bicher A, Link C, Christian M, Steinberg SM, Rothenberg M, Adamo DO, Davis P, Ognibene FP and et al. Dose-intense taxol: high response rate in patients with platinum-resistant recurrent ovarian cancer. J Natl Cancer Inst. 1994; 86: 18-24. DOI: 10.1093/jnci/86.1.18
38.    Morgan MA, Darcy KM, Rose PG, DeGeest K, Bookman MA, Aikins JK, Sill MW, Mannel RS, Allievi C and Egorin MJ. Paclitaxel poliglumex and carboplatin as first-line therapy in ovarian, peritoneal or fallopian tube cancer: a phase I and feasibility trial of the Gynecologic Oncology Group. Gynecol Oncol. 2008; 110: 329-335. DOI: 10.1016/j.ygyno.2008.05.008
39.    Duan Z, Ames RY, Ryan M, Hornicek FJ, Mankin H and Seiden MV. CDDO-Me, a synthetic triterpenoid, inhibits expression of IL-6 and Stat3 phosphorylation in multi-drug resistant ovarian cancer cells. Cancer Chemother Pharmacol. 2009; 63: 681-689. doi: 10.1007/s00280-008-0785-8
40.    Gardner ER, Dahut WL, Scripture CD, Jones J, Aragon-Ching JB, Desai N, Hawkins MJ, Sparreboom A and Figg WD. Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res. 2008; 14: 4200-4205. DOI: 10.1158/1078-0432.CCR-07-4592
41.    Rossi D, Baldelli AM, Casadei V, Fedeli SL, Alessandroni P, Catalano V, Giordani P, Ceccolini M, Graziano F and Catalano G. Neoadjuvant chemotherapy with low dose of pegylated liposomal doxorubicin plus weekly paclitaxel in operable and locally advanced breast cancer. Anticancer Drugs. 2008; 19: 733-737. DOI: 10.1097/cad.0b013e3283043585
42.    Ettinger DS, Finkelstein DM, Sarma RP and Johnson DH. Phase II study of paclitaxel in patients with extensive-disease small-cell lung cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 1995; 13: 1430-1435. DOI: 10.1200/JCO.1995.13.6.1430
43.    Iranzo V, Bremnes RM, Almendros P, Gavila J, Blasco A, Sirera R and Camps C. Induction chemotherapy followed by concurrent chemoradiation for patients with non-operable stage III non -small-cell lung cancer. Lung Cancer. 2009; 63: 63-67.
44.    Pennathur A, Luketich JD, Landreneau RJ, Ward J, Christie NA, Gibson MK, Schuchert M, Cooper K, Land SR and Belani CP. Long-term results of a phase II trial of neoadjuvant chemotherapy followed by esophagectomy for locally advanced esophageal neoplasm. Ann Thorac Surg. 2008; 85: 1930-1936. DOI: 10.1016/j.athoracsur.2008.01.097
45.    Okano J, Nagahara T, Matsumoto K and Murawaki Y. The growth inhibition of liver cancer cells by paclitaxel and the involvement of extracellular signal-regulated kinase and apoptosis. Oncol Rep. 2007; 17: 1195-1200.
46.    Parness J and Horwitz SB. Taxol binds to polymerized tubulin in-vitro. J Cell Biol. 1981; 91: 479-487. DOI: 10.1083/jcb.91.2.479
47.    Andreu JM, Bordas J, Diaz JF, Garcia de Ancos J, Gil R, Medrano FJ, Nogales E, Pantos E and Towns-Andrews E. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol induced microtubules assembled from purified tubulin in comparison with glycerol and MAP induced microtubules. J Mol Biol. 1992; 226: 169-184. DOI: 10.1016/0022-2836(92)90132-4
48.    Schiff PB and Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980; 77: 1561-1565. DOI: 10.1073/pnas.77.3.1561
49.    Arijit Gandhi, Suma Oomen Sen, Abhijit Paul, “Current trends in Niosome as Vesicular Drug Delivery system” Asian Journal of Pharmacy and Life Science, 2012,2, 123-135
50.    Vyas S, Khar R. Targeted and Controlled Drug Delivery, Novel Carrier System. CBS publication. 2007; 1: 249-279.
51.    Arul J. An Overview on Niosome as Carrier in Dermal Drug Delivery. J. Pharm. Sci. & Research. 2015; 7: 923-929.
52.    Makeshwar K, Wasankar S. Niosomes: a novel drug delivery system. Asian J. Pharm. Res. 2013; 3: 16-20. DOI: 10.5958/2231–5691
53.    Verma A. A vital role of niosomes on Controlled and Novel Drug delivery. Indian Journal of Novel Drug Delivery. 2011; 3: 238-246.
54.    Moghassemi S, Hadjizadeh A. Nano-niosomes as Nanoscale Drug Delivery Systems: An illustrated review. Journal of Controlled Release. 2014; 2: 22-36. DOI: 10.1016/j.jconrel.2014.04.015
55.    Mozafari MR. (ed.), Nanomaterials and Nanosystems for Biomedical Applications, 67-81.
56.    Schreier, H. Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994; 30: 1-15.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available