Author(s): Annamalai Rama, Anuja Pai, Divya Rosa Barreto, Siva Kumar Kannan, Anup Naha

Email(s): anupnaha.mahe@gmail.com

DOI: 10.52711/0974-360X.2022.00468   

Address: Annamalai Rama, Anuja Pai, Divya Rosa Barreto, Siva Kumar Kannan, Anup Naha*
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 6,     Year - 2022


ABSTRACT:
Virus-Like Particles (VLP) mimics virions immunologically which induces high titers of neutralizing antibodies to conformational epitopes due to the high-density display of epitopes, present multiple proteins which are optimal for uptake by dendritic cells and are assembled in vivo. VLP triggers the immune response of the body against the diseases and is broadly two types like non enveloped VLP’s and Enveloped VLP’s. The present review discusses the production, analysis, and mechanism of action of virus-like particles. Various applications, the Indian Scenario of VLP, Limitations, and future scopes are briefly reviewed and discussed. VLPs imitate authentic viruses in antigenic morphology and offer a stable alternative to attenuated and inactivated viruses in the production of vaccines. It can effectively deliver foreign nucleic acids, proteins, or conjugated compounds to the system, or even to particular types of cells, due to their transducing properties. It retains the ability to infiltrate and render cells useful for a wide range of applications. Used as a tool to increase the immunogenicity of poorly immunogenic antigens, VLP therapeutics can be developed and manufactured in a way that would be sufficiently cheap to be seen globally in many countries. The ability to mass-produce them cost-effectively improves their possibility of being introduced to undeveloped countries.


Cite this article:
Annamalai Rama, Anuja Pai, Divya Rosa Barreto, Siva Kumar Kannan, Anup Naha. Virus-Like particles as a Novel Targeted Drug Delivery Platform for Biomedical Applications. Research Journal of Pharmacy and Technology. 2022; 15(6):2801-8. doi: 10.52711/0974-360X.2022.00468

Cite(Electronic):
Annamalai Rama, Anuja Pai, Divya Rosa Barreto, Siva Kumar Kannan, Anup Naha. Virus-Like particles as a Novel Targeted Drug Delivery Platform for Biomedical Applications. Research Journal of Pharmacy and Technology. 2022; 15(6):2801-8. doi: 10.52711/0974-360X.2022.00468   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-6-72


REFERENCES:
1.    Ludwig C, Wagner R. Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol 2007; 18: 537–545.doi.org/10.1016/j.copbio.2007.10.013
2.    Gadhave DU, Gaikwad PS, Pimpodkar N V., et al. DNA vaccines: A hope full ray in Immunology. Asian J Res Pharm Sci 2015; 5: 1–6. doi.org/10.5958/2231-5659.2015.00020.X
3.    Yadav R. Vaccines Other Than Specified in National Immunization Schedule among Parents of under-five Children. Int J Adv Nurs Manag 2015; 3: 64–68. doi.org/10.5958/2454-2652
4.    Nishimura Y, Takeda K, Ezawa R, et al. A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a Bio-nanocapsule via an endocytic uptake pathway. J Nanobiotechnology 2014; 12: 2–7. doi.org/10.1186/1477-3155-12-11
5.    Carvalho SB, Freire JM, Moleirinho MG, et al. Bioorthogonal Strategy for Bioprocessing of Specific-Site-Functionalized Enveloped Influenza-Virus-Like Particles. Bioconjug Chem 2016; 27: 2386–2399. doi.org/10.1021/acs.bioconjchem.6b00372
6.    Singh P, Destito G, Schneemann A, et al. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4: 1–11. doi.org/10.1186/1477-3155-4-2
7.    Lino CA, Caldeira JC, Peabody DS. Display of single-chain variable fragments on bacteriophage MS2 virus-like particles. J Nanobiotechnology 2017; 15: 1–10. doi.org/10.1186/s12951-016-0240-7
8.    Gomes AC, Mohsen M, Bachmann MF. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines; 5. Epub ahead of print 2017. DOI: 10.3390/vaccines5010006. doi.org/10.3390/vaccines5010006
9.    Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccines Immunother 2013; 9: 26–49. doi.org/10.4161/hv.22218
10.    Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 2017; 114: 60–78. doi.org/10.1016/j.addr.2017.03.005
11.    Timmins P. Industry update. Ther Deliv 2014; 5: 969–974. doi.org/10.4155/tde.14.26
12.    Deo VK, Kato T, Park EY. Chimeric Virus-Like Particles Made Using GAG and M1 Capsid Proteins Providing Dual Drug Delivery and Vaccination Platform. Mol Pharm 2015; 12: 839–845. doi.org/10.1021/mp500860x
13.    Raghotham S, Balamuralidhara V, Karuna K. Registration requirement and approval procedure of vaccines in Saudi Arabia. Res J Pharm Technol 2019; 12: 4531–4538. doi.org/10.5958/0974-360X.2019.00780.7
14.    Dutta D, Chakraborty P. Orphan drugs -Its pros and cons. Res J Pharm Dos Form Technol 2009; 1: 59–66. doi.org/10.5958/0975-4377
15.    Patil S, Maske A, Sapkale G, et al. Unique Approaches to Vaccine Development Formulation and Delivery. Res J Pharmacol Pharmacodyn 2010; 2: 99–102. 10.5958 2321-5836
16.    Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol 2017; 39: 174–180. 10.1016/j.nbt.2017.07.010
17.    Andersson AMC, Schwerdtfeger M, Holst PJ. Virus-like-vaccines against HIV. Vaccines; 6. Epub ahead of print 2018. doi.org/10.3390/vaccines6010010.
18.    Wang S, Liu H, Zhang X, et al. Intranasal and oral vaccination with protein-based antigens: Advantages, challenges and formulation strategies. Protein Cell 2015; 6: 480–503. doi.org/10.1007/s13238-015-0164-2
19.    Zeltins A. Construction and characterization of virus-like particles: A review. Mol Biotechnol 2013; 53: 92–107. doi.org/10.1007/s12033-012-9598-4.
20.    Hodgins B, Pillet S, Landry N, et al. Prime-pull vaccination with a plant-derived virus-like particle influenza vaccine elicits a broad immune response and protects aged mice from death and frailty after challenge. Immun Ageing 2019; 16: 1–14. doi.org/10.1186/s12979-019-0167-6.
21.    Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccines Immunother 2015; 11: 1223–1234. doi.org/10.1080/21645515.2015.1016666.
22.    Hodgins B, Yam KK, Winter K, et al. A single intramuscular dose of a plant-made virus-like particle vaccine elicits a balanced humoral and cellular response and protects young and aged mice from influenza H1N1 virus challenge despite a modest/absent humoral response. Clin Vaccine Immunol; 24. Epub ahead of print 2017. doi.org/10.1128/CVI.00273-17.
23.    Villegas-Mendez A, Garin MI, Pineda-Molina E, et al. In Vivo delivery of antigens by adenovirus dodecahedron induces cellular and humoral immune responses to elicit antitumor immunity. Mol Ther 2010; 18: 1046–1053. doi.org/10.1038/mt.2010.16.
24.    Donaldson B, Al-Barwani F, Pelham SJ, et al. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer 2017; 5: 1–13. doi.org/10.1186/s40425-017-0270-1
25.    Fu A, Tang R, Hardie J, et al. Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjug Chem 2014; 25: 1602–1608. doi.org/10.1021/bc500320j
26.    Cabral-Miranda G, Heath MD, Mohsen MO, et al. Virus-like particle (VLP) plus microcrystalline tyrosine (MCT) adjuvants enhance vaccine efficacy improving T and B cell immunogenicity and protection against Plasmodium berghei/vivax. Vaccines; 5. Epub ahead of print 2017. doi.org/10.3390/vaccines5020010.
27.    Arora U, Tyagi P, Swaminathan S, et al. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J Nanobiotechnology 2012; 10: 1–6. doi.org/10.1186/1477-3155-10-30
28.    Schumacher J, Bacic T, Staritzbichler R, et al. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018; 16: 1–21. doi.org/10.1186/s12951-018-0363-0
29.    Panda SK, Kapur N, Paliwal D, et al. Recombinant Hepatitis E virus like particles can function as RNA nanocarriers. J Nanobiotechnology 2015; 13: 1–6. doi.org/10.1186/s12951-015-0101-9
30.    Ou X, Guo L, Wu J, et al. Construction, expression and immunogenicity of a novel anti-hypertension angiotensin II vaccine based on hepatitis A virus-like particle. Hum Vaccines Immunother 2013; 9: 1191–1199. doi.org/10.4161/hv.23940
31.    Kanda T, Kondo K. Development of an HPV vaccine for a broad spectrum of high-risk types. Hum Vaccin 2009; 5: 43–45. doi.org/10.4161/hv.5.1.6554
32.    Tan M, Xia M, Huang P, et al. Norovirus P Particle as a Platform for Antigen Presentation. Procedia Vaccinol 2011; 4: 19–26. doi.org/10.1128/JVI.01835-10
33.    Yong CY, Yeap SK, Ho KL, et al. Potential recombinant vaccine against influenza A virus based on M2e displayed on nodaviral capsid nanoparticles. Int J Nanomedicine 2015; 10: 2751–2763. doi.org/10.2147/IJN.S77405
34.    Tan M, Jiang X. Recent advancements in combination subunit vaccine development. Hum Vaccines Immunother 2017; 13: 180–185. doi.org/10.1080/21645515.2016.1229719
35.    Roth JA. Veterinary Vaccines and Their Importance to Animal Health and Public Health. Procedia Vaccinol 2011; 5: 127–136. doi.org/10.1016/j.provac.2011.10.009
36.    Chu X, Li Y, Long Q, et al. Chimeric HBcAg virus-like particles presenting a HPV 16 E7 epitope significantly suppressed tumor progression through preventive or therapeutic immunization in a TC-1-grafted mouse model. Int J Nanomedicine 2016; 11: 2417–2429. doi.org/10.2147/IJN.S102467.
37.    Zeltins A, West J, Zabel F, et al. Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy. npj Vaccines 2017; 2: 1–12. doi.org/10.1038/s41541-017-0030-8
38.    Makarkov AI, Chierzi S, Pillet S, et al. Plant-made virus-like particles bearing influenza hemagglutinin (HA) recapitulate early interactions of native influenza virions with human monocytes/macrophages. Vaccine 2017; 35: 4629–4636. doi.org/10.1016/j.vaccine.2017.07.012
39.    Pan Y, Jia T, Zhang Y, et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 2012; 7: 5957–5967. doi.org/10.2147/IJN.S37990
40.    Guillén G, Aguilar JC, Dueñas S, et al. Virus-Like Particles as vaccine antigens and adjuvants: Application to chronic disease, cancer immunotherapy and infectious disease preventive strategies. Procedia Vaccinol 2010; 2: 128–133. doi.org/10.1016/j.provac.2010.07.004
41.    Tang CT, Li PC, Liu IJ, et al. An epitope-substituted DNA vaccine improves safety and immunogenicity against dengue virus type 2. PLoS Negl Trop Dis 2015; 9: 1–23. doi.org/10.1371/journal.pntd.0003903
42.    Mi P, Zhang P, Liu G. Bio-inspired virus-like nanovesicle for effective vaccination. Hum Vaccines Immunother 2016; 12: 2090–2091. doi.org/10.1080/21645515.2016.1157244
43.    Peretti S, Schiavoni I, Pugliese K, et al. Cell death induced by the herpes simplex virus-1 thymidine kinase delivered by human immunodeficiency virus-1-based virus-like particles. Mol Ther 2005; 12: 1185–1196. doi.org/10.1016/j.ymthe.2005.06.474
44.    Khetarpal N, Poddar A, Nemani SK, et al. Dengue-specific subviral nanoparticles: Design, creation and characterization. J Nanobiotechnology 2013; 11: 1–8. doi.org/10.1186/1477-3155-11-15
45.    Li PC, Liao MY, Cheng PC, et al. Development of a humanized antibody with high therapeutic potential against dengue virus type 2. PLoS Negl Trop Dis; 6. Epub ahead of print 2012. DOI: 10.1371/journal.pntd.0001636. doi.org/10.1371/journal.pntd.0001636
46.    Murakami S, Terasaki K, Ramirez SI, et al. Development of a Novel, Single-Cycle Replicable Rift Valley Fever Vaccine. PLoS Negl Trop Dis 2014; 8: 1–13. doi.org/10.1371/journal.pntd.0002746
47.    Metz SW, Gardner J, Geertsema C, et al. Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells. PLoS Negl Trop Dis; 7. Epub ahead of print 2013. DOI: 10.1371/journal.pntd.0002124. doi.org/10.1371/journal.pntd.0002124
48.    Pillay S, Shephard EG, Meyers AE, et al. HIV-1 sub-type C chimaeric VLPs boost cellular immune responses in mice. J Immune Based Ther Vaccines 2010; 8: 2–7. doi.org/10.1186/1476-8518-8-7
49.    Pietrzak M, Macioła A, Zdanowski K, et al. An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge. Antiviral Res 2016; 133: 242–249. doi.org/10.1016/j.antiviral.2016.08.001
50.    Peabody DS. A viral platform for chemical modification and multivalent display. J Nanobiotechnology 2003; 1: 1–8. doi.org/10.1186/1477-3155-1-5
51.    Seow Y, Wood MJ. Biological gene delivery vehicles: Beyond viral vectors. Mol Ther 2009; 17: 767–777. doi.org/10.1038/mt.2009.41
52.    Pomwised R, Intamaso U, Teintze M, et al. Coupling peptide antigens to virus-like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response. Vaccines 2016; 4: 1–10. doi.org/10.3390/vaccines4020015
53.    Huang X, Wang X, Zhang J, et al. Escherichia coli-derived virus-like particles in vaccine development. npj Vaccines 2017; 2: 1–8. doi.org/10.1038/s41541-017-0006-8
54.    Young KR, Arthus-Cartier G, Yam KK, et al. Generation and characterization of a trackable plant-made influenza H5 virus-like particle (VLP) containing enhanced green fluorescent protein (eGFP). FASEB J 2015; 29: 3817–3827. doi.org/10.1096/fj.15-270421
55.    Schmidt R, Beltzig LC, Sawatsky B, et al. Generation of therapeutic antisera for emerging viral infections. npj Vaccines 2018; 3: 1–10. doi.org/10.1038/s41541-018-0082-4
56.    Pillet S, Racine T, Nfon C, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine 2015; 33: 6282–6289. doi.org/10.1016/j.vaccine.2015.09.065
57.    Hendin HE, Pillet S, Lara AN, et al. Plant-made virus-like particle vaccines bearing the hemagglutinin of either seasonal (H1) or avian (H5) influenza have distinct patterns of interaction with human immune cells in vitro. Vaccine 2017; 35: 2592–2599. doi.org/10.1016/j.vaccine.2017.03.058
58.    Saxena R, Mishra G, Diwan B, et al. HIV/AIDS vaccine design and strategies. J Vaccines Vaccin; 4. Epub ahead of print 2013. doi.org/10.4172/2157-7560.1000190. 10.4172/2157-7560.1000190
59.    Park YC, Song JM. Preparation and immunogenicity of influenza virus-like particles using nitrocellulose membrane filtration. Clin Exp Vaccine Res 2017; 6: 61–66. doi.org/10.7774/cevr.2017.6.1.61
60.    Chong P, Hsieh SY, Liu CC, et al. Production of EV71 vaccine candidates. Hum Vaccines Immunother 2012; 8: 1775–1783. doi.org/10.4161/hv.21739
61.    Coimbra EC, Gomes FB, Campos JF, et al. Production of L1 protein from different types of HPV in Pichia pastoris using an integrative vector. Brazilian J Med Biol Res 2011; 44: 1209–1214. doi.org/10.1590/S0100-879X2011007500141
62.    Rodríguez-Limas WA, Sekar K, Tyo KEJ. Virus-like particles: The future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotechnol 2013; 24: 1089–1093. doi.org/10.1016/j.copbio.2013.02.008
63.    Chroboczek J, Szurgot I, Szolajska E. Virus-like particles as vaccine. Acta Biochim Pol 2014; 61: 531–539. http://www.actabp.pl/pdf/3_2014/531.pdf
64.    Moingeon P. Adjuvants for allergy vaccines. Hum Vaccines Immunother 2012; 8: 1492–1498. doi.org/10.4161/hv.21688
65.    Pham NB, Ho TT, Nguyen GT, et al. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J Nanobiotechnology 2017; 15: 1–12. doi.org/10.1186/s12951-017-0305-2
66.    Dourmashkin RR, McCall SA, Dourmashkin N, et al. Virus-like particles and enterovirus antigen found in the brainstem neurons of Parkinson’s disease. F1000Research 2018; 7: 302. doi.org/10.12688/f1000research.13626.2
67.    Okimoto T, Friedmann T, Miyanohara A. VSV-G envelope glycoprotein forms complexes with plasmid DNA and MLV retrovirus-like particles in cell-free conditions and enhances DNA transfection. Mol Ther 2001; 4: 232–238. doi.org/10.1006/mthe.2001.0443
68.    Lai CY, Williams KL, Wu YC, et al. Analysis of Cross-Reactive Antibodies Recognizing the Fusion Loop of Envelope Protein and Correlation with Neutralizing Antibody Titers in Nicaraguan Dengue Cases. PLoS Negl Trop Dis 2013; 7: 1–11.
1.    doi.org/10.1371/journal.pntd.0002451
69.    Shao W, Paul A, Abbasi S, et al. A novel polyethyleneimine-coated adenoassociated virus-like particle formulation for efficient siRNA delivery in breast cancer therapy: Preparation and in vitro analysis. Int J Nanomedicine 2012; 7: 1575–1586. doi.org/10.2147/IJN.S26891
70.    Zhang Y, Li M, Yang F, et al. Comparable quality attributes of hepatitis E vaccine antigen with and without adjuvant adsorption-dissolution treatment. Hum Vaccines Immunother 2015; 11: 1129–1139. doi.org/10.1080/21645515.2015.1009343
71.    Shanmuganatham K, Feeroz MM, Jones-Engel L, et al. Genesis of avian influenza H9N2 in Bangladesh. Emerg Microbes Infect; 3. Epub ahead of print 2014. doi.org/10.1038/emi.2014.84
72.    Chen HW, Huang CY, Lin SY, et al. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials 2016; 106: 111–118. doi.org/10.1016/j.biomaterials.2016.08.018
73.    Le Tallec D, Doucet D, Elouahabi A, et al. Cervarix TM, the GSK HPV-16/HPV-18 AS04-adjuvanted cervical cancer vaccine, demonstrates stability upon long-term storage-and under simulated cold chain break conditions. Hum Vaccin 2009; 5: 467–474. doi.org/10.4161/hv.8485
74.    Chopra G, Kaushik S, Elkin PL, et al. Combating Ebola with repurposed therapeutics using the CANDO platform. Molecules 2016; 21: 1–11. doi.org/10.3390/molecules21121537
75.    Lee N, Shum D, König A, et al. High-throughput drug screening using the Ebola virus transcription- and replication-competent virus-like particle system. Antiviral Res 2018; 158: 226–237. doi.org/10.1016/j.antiviral.2018.08.013
76.    Deschuyteneer M, Elouahabi A, Plainchamp D, et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in CervarixTM, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin 2010; 6: 407–419. doi.org/10.4161/hv.6.5.11023
77.    Mohsen MO, Zha L, Cabral-Miranda G, et al. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol 2017; 34: 123–132. doi.org/10.1016/j.smim.2017.08.014
78.    Chen Q, He J, Phoolcharoen W, et al. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 2011; 7: 331–338. doi.org/10.4161/hv.7.3.14262
79.    Harahap-Carrillo IS, Ceballos-Olvera I, Reyes-del Valle J. Immunogenic subviral particles displaying domain III of dengue 2 envelope protein vectored by measles virus. Vaccines 2015; 3: 503–518. doi.org/10.3390/vaccines3030503
80.    Cao D, Meng XJ. Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect; 1. Epub ahead of print 2012. doi.org/10.1038/emi.2012.7.
81.    Wen B, Deng Y, Chen H, et al. The novel replication-defective vaccinia virus (tiantan strain)-based hepatitis C virus vaccine induces robust immunity in macaques. Mol Ther 2013; 21: 1787–1795. doi.org/10.1038/mt.2013.122
82.    Dhanasooraj D, Ajay Kumar R, Mundayoor S. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles. Int J Nanomedicine 2013; 8: 835–843. doi.org/10.2147/IJN.S40238
83.    Palmer AK, Harris AL, Jacobson RM. Human papillomavirus vaccination: A case study in translational science. Clin Transl Sci 2014; 7: 420–424. doi.org/10.1111/cts.12166
84.    Wei M, Wang D, Li Z, et al. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg Microbes Infect; 7. Epub ahead of print 2018. doi.org/10.1038/s41426-018-0158-2.
85.    Winters U, Roden R, Kitchener H, et al. Progress in the development of a cervical cancer vaccine. Ther Clin Risk Manag 2006; 2: 259–269. doi.org/10.2147/tcrm.2006.2.3.259
86.    Yan X, Wang D, Liang F, et al. HPV16L1-attenuated Shigella recombinant vaccine induced strong vaginal and systemic immune responses in guinea pig model. Hum Vaccines Immunother 2014; 10: 3491–3498. doi.org/10.4161/hv.36084
87.    Gupta G, Glueck R, Patel PR. HPV vaccines: Global perspectives. Hum Vaccines Immunother 2017; 13: 1421–1424. doi.org/10.1080/21645515.2017.1289301
88.    Robbins HA, Waterboer T, Porras C, et al. Immunogenicity assessment of HPV16/18 vaccine using the glutathione S-transferase L1 multiplex serology assay. Hum Vaccines Immunother 2014; 10: 2965–2974. doi.org/10.4161/21645515.2014.972811
89.    Basu P, Bhatla N, Ngoma T, et al. Less than 3 doses of the HPV vaccine – Review of efficacy against virological and disease end points. Hum Vaccines Immunother 2016; 12: 1394–1402. doi.org/10.1080/21645515.2016.1146429
90.    Luxembourg A, Brown D, Bouchard C, et al. Phase II studies to select the formulation of a multivalent HPV L1 virus-like particle (VLP) vaccine. Hum Vaccines Immunother 2015; 11: 1313–1322. doi.org/10.1080/21645515.2015.1012010.
91.    Cuburu N, Chackerian B. Genital delivery of virus-like particle and pseudovirus-based vaccines. Expert Rev Vaccines 2011; 10: 1245–1248. doi.org/10.1586/erv.11.104
92.    Herrin DM, Coates EE, Costner PJ, et al. Comparison of adaptive and innate immune responses induced by licensed vaccines for human papillomavirus. Hum Vaccines Immunother 2014; 10: 3446–3454. doi.org/10.4161/hv.34408
93.    Patil SS, Mali SS, Patil RR, et al. Zika virus: Infection, virus, development and process of vaccines. Res J Pharm Technol 2018; 11: 5159–5162. doi.org/10.5958/0974-360X.2018.00942.3
94.    Lambricht L, Vanvarenberg K, De Beuckelaer A, et al. Coadministration of a plasmid encoding HIV-1 gag enhances the efficacy of cancer DNA vaccines. Mol Ther 2016; 24: 1686–1696.  doi.org/10.1038/mt.2016.122
95.    Nowicka-sans B, Protack T, Lin Z, et al. Identification and Characterization of BMS-955176, a Second- generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage. Antimicrob Agents Chemother 2016; 60: 3956–3969. doi.org/10.1128/AAC.02560-15
96.    Zhao C, Ao Z, Yao X. Current advances in virus-like particles as a vaccination approach against HIV infection. Vaccines 2016; 4: 1–20. doi.org/10.3390/vaccines4010002
97.    Pankrac J, Klein K, McKay PF, et al. A heterogeneous human immunodeficiency virus-like particle (VLP) formulation produced by a novel vector system. npj Vaccines 2018; 3: 1–10. doi.org/10.1038/s41541-017-0040-6
98.    Naim HY. Applications and challenges of multivalent recombinantvaccines. Hum Vaccines Immunother 2013; 9: 457–461. doi.org/10.4161/hv.23220
99.    Kusi KA, Faber BW, Koopman G, et al. EDiP: the Epitope Dilution Phenomenon. Lessons learnt from a malaria vaccine antigen and its applicability to polymorphic antigens. Expert Rev Vaccines 2018; 17: 13–21. doi.org/10.1080/14760584.2018.1411198
100.    Gangadhara S, Kwon YM, Jeeva S, et al. Vaccination with combination DNA and virus-like particles enhances humoral and cellular immune responses upon boost with recombinant modified vaccinia virus ankara expressing human immunodeficiency virus envelope proteins. Vaccines; 5. Epub ahead of print 2017.  doi.org/10.3390/vaccines5040052.
101.    Gao Y, Wijewardhana C, Mann JFS. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front Immunol 2018; 9: 1–18. doi.org/10.3389/fimmu.2018.00345
102.    Thrane S, Janitzek CM, Matondo S, et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnology 2016; 14: 1–16. doi.org/10.1186/s12951-016-0181-1
103.    Pitoiset F, Vazquez T, Bellier B. Enveloped virus-like particle platforms: Vaccines of the future? Expert Rev Vaccines 2015; 14: 913–915. doi.org/10.1586/14760584.2015.1046440
104.    Mutiah R, Badiah R, Hayati EK, et al.  Activity of Antimalarial Compounds from Ethyl Acetate Fraction of Sunflower Leaves ( Helianthus annuus L.) against Plasmodium falciparum Parasites 3D7 Strain . Asian J Pharm Technol 2017; 7: 86. doi.org/10.5958/2231-5713.2017.00015.0
105.    Thillainayagam M, Ramaiah S. Mosquito, malaria and medicines – A review. Res J Pharm Technol 2016; 9: 1268–1276. doi.org/10.5958/0974-360X.2016.00241.9
106.    Sander AF, Lollini PL. Virus-like antigen display for cancer vaccine development, what is the potential? Expert Rev Vaccines 2018; 17: 285–288. doi.org/10.1080/14760584.2018.1455505
107.    Sainsbury F. Virus-like nanoparticles: Emerging tools for targeted cancer diagnostics and therapeutics. Ther Deliv 2017; 8: 1019–1021. doi.org/10.4155/tde-2017-0098
108.    Zhang C, Zhang X, Zhang W, et al. Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice article. Emerg Microbes Infect; 7. Epub ahead of print 2018. doi.org/10.1038/s41426-017-0005-x.
109.    Hu D, Zhu C, Ai L, et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect; 7. Epub ahead of print 2018. doi.org/10.1038/s41426-018-0155-5.
110.    NASKALSKA A, PYRĆ K. Virus Like Particles as Immunogens and Universal Nanocarriers. Polish J Microbiol 2015; 64: 3–13. http://www.pjmonline.org/wp-content/uploads/archive/vol6412015003.pdf
111.    Akache B, Weeratna RD, Deora A, et al. Anti-ige Qb-VLP conjugate vaccine self-adjuvants through activation of TLR7. Vaccines; 4. Epub ahead of print 2016. doi.org/10.3390/vaccines4010003.
112.    Walpita P, Cong Y, Jahrling PB, et al. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. npj Vaccines 2017; 2: 1–8. doi.org/10.1038/s41541-017-0023-7
113.    Wei H, Chen Z, Elson A, et al. Developing a platform system for gene delivery: Amplifying virus-like particles (AVLP) as an influenza vaccine. npj Vaccines; 2. Epub ahead of print 2017. doi.org/10.1038/s41541-017-0031-7.
114.    Cavelti-Weder C, Timper K, Seelig E, et al. Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol Ther 2016; 24: 1003–1012. doi.org/10.1038/mt.2015.227
115.    Hoffmann DB, Gruber J, Böker KO, et al. Effects of RANKL Knockdown by Virus-like Particle-Mediated RNAi in a Rat Model of Osteoporosis. Mol Ther - Nucleic Acids 2018; 12: 443–452. doi.org/10.1016/j.omtn.2018.06.001
116.    Schoonen L, Maas RJM, Nolte RJM, et al. Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron 2017; 73: 4968–4971. doi.org/10.1016/j.tet.2017.04.038
117.    Laimbacher AS, Esteban LE, Castello AA, et al. HSV-1 amplicon vectors launch the production of heterologous rotavirus-like particles and induce rotavirus-specific immune responses in mice. Mol Ther 2012; 20: 1810–1820. doi.org/10.1038/mt.2012.108
118.    Pillet S, Aubin É, Trépanier S, et al. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. npj Vaccines; 3. Epub ahead of print 2018. doi.org/10.1038/s41541-017-0043-3.
119.    Shimizu M, Yanase S, Chang Myint OO, et al. Influenza virus-like particles containing HA, NA, and M1 induced protection in chickens against a lethal challenge with the highly pathogenic H5N1 avian influenza virus. J Vaccines Vaccin 2013; 4: 1–7. doi.org/10.4172/2157-7560.1000201
120.    Le Mauff F, Loutelier-Bourhis C, Bardor M, et al. Cell wall biochemical alterations during Agrobacterium-mediated expression of haemagglutinin-based influenza virus-like vaccine particles in tobacco. Plant Biotechnol J 2017; 15: 285–296. doi.org/10.1111/pbi.12607
121.    Lundstrom K. Replicon RNA viral vectors as vaccines. Vaccines; 4. Epub ahead of print 2016. doi.org/10.3390/vaccines4040039.
122.    Zeltins A, Turks M, Skrastina D, et al. Synthesis and immunological evaluation of virus-like particle-milbemycin A3/A4 conjugates. Antibiotics 2017; 6: 2–9. doi.org/10.3390/antibiotics6030018
123.    Caldeira JC, Peabody DS. Thermal Stability of RNA Phage Virus-Like Particles Displaying Foreign Peptides. J Nanobiotechnology 2011; 9: 1–7. doi.org/10.1186/1477-3155-9-22
124.    Kim KH, Kwon YM, Lee YT, et al. Virus-like particles are a superior platform for presenting M2e epitopes to prime humoral and cellular immunity against influenza virus. Vaccines; 6. Epub ahead of print 2018. doi.org/10.3390/vaccines6040066.
125.    Kim MC, Song JM, Eunju O, et al. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol Ther 2013; 21: 485–492. doi.org/10.1038/mt.2012.246.
126.    Won SY, Hunt K, Guak H, et al. Characterization of the innate stimulatory capacity of plant-derived virus-like particles bearing influenza hemagglutinin. Vaccine 2018; 36: 8028–8038. doi.org/10.1016/j.vaccine.2018.10.099
127.    Tamborrini M, Geib N, Marrero-Nodarse A, et al. A synthetic virus-like particle streptococcal vaccine candidate using B-cell epitopes from the proline-rich region of pneumococcal surface protein A. Vaccines 2015; 3: 850–874. doi.org/10.3390/vaccines3040850
128.    Jones JW, Greene TA, Grygon CA, et al. Cell-free assay of G-protein-coupled receptors using fluorescence polarization. J Biomol Screen 2008; 13: 424–429. doi.org/10.1177/1087057108318332
129.    Lappalainen S, Pastor AR, Tamminen K, et al. Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo. Hum Vaccines Immunother 2014; 10: 2039–2047. doi.org/10.4161/hv.28858
130.    Jutras P V., D’Aoust MA, Couture MMJ, et al. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants. Biotechnol J 2015; 10: 1478–1486. doi.org/10.1002/biot.201500056
131.    Blazevic V, Malm M, Arinobu D, et al. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine. Hum Vaccines Immunother 2016; 12: 740–748. doi.org/10.1080/21645515.2015.1099772.
132.    Lee Y, Lee YT, Ko EJ, et al. Soluble F proteins exacerbate pulmonary histopathology after vaccination upon respiratory syncytial virus challenge but not when presented on virus-like particles. Hum Vaccines Immunother 2017; 13: 2594–2605. doi.org/10.1080/21645515.2017.1362514.
133.    Bugli F, Caprettini V, Cacaci M, et al. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein. Int J Nanomedicine 2014; 9: 2727–2739. doi.org/10.2147/IJN.S60014
134.    Cullen LM, Schmidt MR, Morrison TG. The importance of RSV F protein conformation in VLPs in stimulation of neutralizing antibody titers in mice previously infected with RSV. Hum Vaccines Immunother 2017; 13: 2814–2823. doi.org/10.1080/21645515.2017.1329069.
135.    Gupta E, Ballani N. Current perspectives on the spread of dengue in India. Infect Drug Resist 2014; 7: 337–342. doi.org/10.2147/IDR.S55376
136.    Mellitus D, Diseases M. CPL Biologicals launches Cadiflu-S, World’ s first virus like particle (VLP) vaccine for seasonal influenza. 2017; 9–10. http://cplbio.com/news-event-post/cpl-biologicals-launches-cadiflu-s-worlds-first-virus-like-particle-vlp-vaccine-for-seasonal-influenza/
137.    Montague NP, Thuenemann EC, Saxena P, et al. Recent advances of cowpea mosaic virus-based particle technology. Hum Vaccin 2011; 7: 383–390. doi.org/10.4161/hv.7.3.14989.
138.    Kim MC, Lee YN, Ko EJ, et al. Supplementation of influenza split vaccines with conserved M2 ectodomains overcomes strain specificity and provides long-term cross protection. Mol Ther 2014; 22: 1364–1374. doi.org/10.1038/mt.2014.33
139.    Madhusudhanan J, Sathishkumar K. Gold Nanoparticle for Protein Delivery. Res J Eng Technol 2013; 4: 260–263. doi.org/10.5958/2321-581X

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available