Author(s): Kovachev P

Email(s): pharmkovachev@gmail.com

DOI: 10.52711/0974-360X.2022.00466   

Address: Kovachev P*
Department of Complex Analysis and Topology, Sofia University "St. Kliment Ohridski", Bulgaria.
*Corresponding Author

Published In:   Volume - 15,      Issue - 6,     Year - 2022


ABSTRACT:
The mesoporous silica particles (MSNs) have been investigated as potential drug delivery carriers. They have an extensive surface area and pore volume. Many silanol groups are located along the particles' entire outer and inner surfaces. They make it possible to create bonds or interactions between the drug molecules and the carrier. Still, They are also an extremely suitable basis for further functionalization of the particle and pore surface. This review examines how the functionalization of MSNs, on the one hand, allows more successful loading of active substances into their pores and, on the other hand, successfully controls their release. Upon loading sparingly soluble drugs, an improvement in their solubility was found, most likely by amorphization, obtained after crystallization of the problem substance in the delicate pores of these specific carriers. The synthesis of some types of silicate carriers is a method for improving the loading of the particles with active substances is confirmed.


Cite this article:
Kovachev P. Functionalization and Polymer Coating – Strategies to improve Drug Delivery from Mesoporous Silica Nanoparticles. Research Journal of Pharmacy and Technology. 2022; 15(6):2788-2. doi: 10.52711/0974-360X.2022.00466

Cite(Electronic):
Kovachev P. Functionalization and Polymer Coating – Strategies to improve Drug Delivery from Mesoporous Silica Nanoparticles. Research Journal of Pharmacy and Technology. 2022; 15(6):2788-2. doi: 10.52711/0974-360X.2022.00466   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-6-70


REFERENCES:
1.    Vallet-Regí M. Rámila A. Del Real RP. Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chemistry of Materials. 2001; 13( 2):308-311. doi.org/10.1021/cm0011559
2.    Popova T. Voycheva Ch. Tzankov B. Study on the influence of technological factors on drug loading of poorly water-soluble drug on MCM-41 mesoporous carrier. Pharmacia. 2020; 67(4): 351–356. doi: 10.3897/pharmacia.67.e47528
3.    Voycheva C. Tzankov B. Tzankova D. Avramova K. Yoncheva K. Formulation of Tablets Containing Glimepiride-loaded Mesoporous Silica Particles. Indian Journal of Pharmaceutical Sciences. 2019; 81(3): 483-488. doi: 10.36468/pharmaceutical-sciences.533
4.    Gundepaka P. Modam S. Kagga M. Kankala Sh. Vadde R. Vasam Ch S. MCM-41 (H) Catalyzed Selective Deprotection of Sulfonamides. Asian Journal of Research in Pharmaceutical Science. 6(12): December 2013; Page 1121-1123. doi : 10.5958/2231-5659.2020.00029.6
5.    Sasieekhumar AR. Somanathan T. Abilarasu A. Shanmugam M. Mesoporous Fe/MCM-41 as Heterogeneous Photocatalyst for the Photodegradation of Methylene Blue. Research Journal of Pharmacy and Technology. 2017; 10(10):3398-3400. doi: 10.5958/0974360X.2017.00604.7
6.    Tzankov B. Voycheva C. Yordanov Y. Aluani D. Spassova I. Kovacheva D. Lambov N. Tzankova V. Development and in vitro safety evaluation of pramipexole-loaded hollow mesoporous silica (HMS) particles. Biotechnology & Biotechnological Equipment. 2019; 33(1): 1204-1215. doi.org/10.1080/13102818.2019.1649094
7.    Popova M. Szegedi Á. Kolev I. Mihály J. Tzankov B. Momekov G. Lambov N. Yoncheva K. Carboxylic modified spherical mesoporous silicas аs drug delivery carriers International Journal of Pharmaceutics. 2012; 436 (1–2): 778-785. doi.org/10.1016/j.ijpharm.2012.07.061
8.    Tzankov B. Voycheva C. Aluani D. Yordanov Y. Avramova K. Tzankova V. Spassova I. Kovacheva D. Yoncheva K. Improvement of dissolution of poorly soluble glimepiride by loading on two types of mesoporous silica carriers. Journal of Solid State Chemistry. 2019; (271): 253-259. doi.org/10.1016/j.jssc.2018.12.062
9.    Popova T. Tzankov B. Voycheva C. Yoncheva K. Lambov N. Development of advanced drug delivery systems with bicalutamide based on mesoporous silica particles. Comptes rendus de l'Académie bulgare des sciences. 2019; 72(12): 1654-1660. doi: 10.7546/CRABS.2019.12.08
10.    Popova T. Tzankov B. Voycheva Ch. Spassova I. Kovacheva D. Tzankov S. Aluani D. Tzankova V. Lambov N. Mesoporous silica MCM-41 and HMS as advanced drug delivery carriers for bicalutamide. Journal of Drug Delivery Science and Technology. 2021; 62. doi.org/10.1016/j.jddst.2021.102340
11.    Vallet-Regí M. Revisiting ceramics for medical applications. Dalton Transactions. 2006; (44): 5211–5220. doi.org/10.1039/B610219K
12.    Hoffmann F. Cornelius M. Morell J. Fröba M. Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition. 2006; 45(20): 3216–3251. doi.org/10.1002/anie.200503075
13.    Wang Y. Sun Y. Wang J. Yang Y. Li Y. Yuan Y. Liu C. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability. ACS Applied Materials & Interfaces. 2016; 8(27): 17166–17175. doi.org/10.1021/acsami.6b05370
14.    Bouchoucha M. Gaudreault R. Fortin M. Kleitz F. Mesoporous Silica Nanoparticles: Selective Surface Functionalization for Optimal Relaxometric and Drug Loading Performances. Advanced Functional Materials. 2014; 24(37): 5911–5923. doi.org/10.1002/adfm.201400524
15.    Möller K. Bein T. Talented Mesoporous Silica Nanoparticles. Chemistry of Materials 2017; 29(1): 371–388. doi.org/10.1021/acs.chemmater.6b03629
16.    Kao K. Mou C. Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Microporous and Mesoporous Materials 2013; 169(15): 7–15. doi.org/10.1016/j.micromeso.2012.09.030
17.    Tourne‐Peteilh C. Begu S. Lerner D. Galarneau A. Lafont U. Devoisselle J. Sol‐gel one pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system. Journal of Sol-Gel Science and Technology. 2012; (61): 455‐462. doi: 10.1007/s10971-011-2646-x
18.    Waters L. Hussain T. Parkes G. Hanrahan J. Tobin J. Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation. European Journal of Pharmaceutics and Biopharmaceutics. 2013; 85(3): 936-941. doi: 10.1016/j.ejpb.2013.08.002
19.    Omahony M. Leung A. Ferguson S. Trout B. Myerson A. A Process for the Formation of Nanocrystals of Active Pharmaceutical Ingredients with Poor Aqueous Solubility in a Nanoporous Substrate. Organic Process Research & Development. 2015; 19(9): 1109‐1118. doi.org/10.1021/op500262q
20.    Zhu Y. Shi J. Shen W. Chen H. Dong X. Ruan M. Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology. 2005; (16): 2633–2638. doi.org/10.1088/0957-4484/16/11/027
21.    Palanikumar L. Jeena M. Kim K. Yong J. Kim C. Park M. Ryu J. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper–Hollow Silica Nanoparticles. Scientific Reports. 2017; (7): 46540. https://doi.org/10.1038/srep46540
22.    Vallet-Regí M. Balas F. Arcos D. Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition. 2007; 46(40): 7548–7558. doi: 10.1002/anie.200604488
23.    She X. Chen L. Li C. He C. He L. Kong L. Functionalization of Hollow Mesoporous Silica Nanoparticles for Improved 5-FU Loading. Journal of Nanomaterials. 2015; (872035): 1–9. doi.org/10.1155/2015/872035
24.    Tang Q. Xu Y. Wu D. Sun Y. A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. Journal of Solid State Chemistry. 2006; 179(5): 1513-1520. doi.org/10.1016/j.jssc.2006.02.004
25.    Voycheva C. Popova T. Slavkova M. Tzankova D. Tzankov B. Formulation of Tablets Containing Mesoporous Silica Nanoparticles Loaded with Pramipexole. Indian J of Pharmaceutical Education and Research. 2021; 55(3). doi:10.5530/ijper.55.3.141
26.    Palanikumar L. Kim H. Oh J. Thomas A. Choi E. Jeena M. Joo S. Ryu J. Noncovalent Surface Locking of Mesoporous Silica Nanoparticles for Exceptionally High Hydrophobic Drug Loading and Enhanced Colloidal Stability. Biomacromolecules. 2015; (16): 2701–2714. doi.org/10.1021/acs.biomac.5b00589
27.    Nieto A. Colilla M. Balas F. Vallet-Regí M. Surface Electrochemistry of Mesoporous Silicas as a Key Factor in the Design of Tailored Delivery Devices. Langmuir. 2010; (26): 5038–5049. doi: 10.1021/la904820k
28.    Wang Y. Sun Y. Wang J. Yang Y. Li Y. Yuan Y. Liu C. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability. ACS Applied Materials & Interfaces. 2016; (8): 17166–17175. doi.org/10.1021/acsami.6b05370
29.    Babonneau F. Camus L. Steunou N. Ramila A. Vallet-Regi M. Encapsulation of ibuprofen in mesoporous silica: solid state NMR characterization. Materials Research Society. 2003; (775): 3261–3266. doi.org/10.1557/PROC-775-P3.26
30.    Shankland N. Wilson C. Florence A. Cox P. Refinement of Ibuprofen at 100 K by Single-Crystal Pulsed Neutron Diffraction. Acta Crystallographica Section C. 1997; (53): 951–954. doi.org/10.1107/S0108270197003193
31.    Muñoz B. Rámila A. Pérez-Pariente J. Díaz I. Vallet-Regí M. MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chemistry of Materials. 2003; (15): 500 – 503. doi.org/10.1021/cm021217q
32.    Song S. Hidajat K. Kawi S. Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix−Drug Interactions. Langmuir. 2005; (21): 9568–9575. doi.org/10.1021/la051167e
33.    Doadrio J. Sousa E. Izquierdo-Barba I. Doadrio A. Perez-Pariente J. Vallet-Regí M. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. Journal of Materials Chemistry. 2006; 16(5): 462–466. doi.org/10.1039/B510101H
34.    Tang Q. Xu Y. Wu D. Sun Y. Hydrophobicity-controlled Drug Delivery System from Organic Modified Mesoporous Silica. Chemistry Letters. 2006; 35(5): 474–475. doi.org/10.1246/cl.2006.474
35.    Swapnali AM. RR Vakhariya. SK Mohite. CS Magdum. Polymers used in Drug Delivery System: An Overview. Res. J. Pharma. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019; 11(2):111-115. doi: 10.5958/0975-4377.2019.00017.X
36.    Sivakumar SM. Mohammed MS. Aamena J. Kannadasan M. Pharmaceuticals aspects of Chitosan polymer "In Brief". Research Journal of Pharmacy and Technology. 2013; 6(12), 1439-1442.
37.    Kannadasan M. Jain SK. Roy RK. Preparation and Biodegradation Study of Chitosan Copolymers to Colon Delivery. Research Journal of Pharmacy and Technology. 2014; 7(12): 1438-1440.
38.    Shankar BK. Mandar JB. Rohit KP. Abhirup RS. Sodium Alginate cross-linked Polymeric Microbeads for oral Sustained drug delivery in Hypertension: Formulation and Evaluation. Asian Journal of Research in Pharmaceutical Science, 2020; 10(3):153-157. doi : 10.5958/2231-5659.2020.00029.6
39.    Gadge GG. An Overview: Natural Polymers and their Applications. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020 Apr 1;12(2):131-6. DOI : 10.5958/0975-4377.2020.00023.3
40.    Dontulwar JR. Borikar DK. Biodegradation Studies of Selected Polymers of Carbohydrate Origin. Asian Journal of Research In Chemistry. 2012; 5(2), 197-199. doi: 10.5958/2231-5659.2020.00029.6
41.    Bhaskar B. Shinde N. Deshmukh S. Birudev K. Natural Polymers in Drug Delivery Development. Research Journal of Pharmaceutical Dosage Forms and Technology. 6(1): Jan.-Mar. 2014; Page 54-57. doi: 10.5958/0975-4377
42.    Moulari B. Pertuit D. Pellequer Y. Lamprecht A. The targeting of surface-modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials. 2008; (29): 4554–4560. doi: 10.1016/j.biomaterials.2008.08.009
43.    Yoncheva K. Popova M. Szegedi A. Mihály J. Tzankov B. Lambov N. Konstantinov S. Tzankova V. Pessina F. Valoti M. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. Journal of Solid State Chemistry. 2014; (211): 154-161. doi.org/10.1016/j.jssc.2013.12.020
44.    Baranovskii V, Ganev V, Petkova V, Voicheva Kh, Dimitrov M. Hydrogels Based on Polycarboxylic Acid–Agar-Agar Complexes. Colloid Journal. 2012; 74(6): 675-679. doi: 10.1134/S1061933X12060026
45.    Voycheva Ch. Georgiev V. Natova M. Baranovsky V. Preparation, Modification and Characterization of a Hydrogel Based on Polyacrylic and Polymetacrylic Acid as a Potential Carrier for Drug Delivery Systems. Open Access Journal of Pharmaceutical Research 2017; 1(2): 000112. doi: 10.23880/OAJPR-16000112
46.    Pachare SG. Shirolkar SV. Bhalerao AV. Polyelectrolyte Complex as a Novel System for Controlling Drug Release. Research Journal of Pharmacy and Technology. 20114; (1), 113-120. doi: 10.5958/0974-360X
47.    Raj Kumar Poddar, Pankaj Rakha, SK Singh, DN Mishra. Bioadhesive Polymers as a Platform for Drug Delivery: Possibilities and Future Trends. Research Journal of Pharmaceutical Dosage Forms and Technology. 2010; 2(1):1-6. doi: 10.5958/0975-4377

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available