Author(s): Nur Asmah, Dewi Fatma Suniarti, Endang Winiati Bachtiar, Dewi Angraini Margono, Basri A. Gani


DOI: 10.52711/0974-360X.2022.00446   

Address: Nur Asmah1, Dewi Fatma Suniarti2, Endang Winiati Bachtiar2, Dewi Angraini Margono3, Basri A. Gani4
1Department of Dentistry Conservative, Dentistry Faculty, Universitas Muslim Indonesia, Makasar, Sulawesi Selatan, Indonesia.
2Department of Oral Biology, Dentistry Faculty, Universitas Indonesia, Jakarta-Indonesia.
3Department of Conservative Dentistry, Dentistry Faculty, Universitas Indonesia, Jakarta-Indonesia.
4Department of Oral Biology, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 6,     Year - 2022

Enterococcus faecalis (E. faecalis) is a gram-positive commensal bacterium involved in the pathogenesis of dental root canal infections. Citrus aurantifolia can inhibit the adhesion and growth of E. faecalis. The study aims to evaluate the Antibacterial properties of Citrus aurantifolia ethanol extract to Inhibit the early biofilm formation and growth of Enterococcus faecalis Root Canal Isolate. The necrotic tissue of the root canal from infected patients was cultured by E. faecalis and E. faecalis ATCC 29212 (bacteria control) on ChromAgar medium. The inhibition of E. faecalis biofilm was measured using a violet crystal assay. In contrast, confirmation of E. faecalis growth from planktonic and biofilm masses was tested using the Total plate count assay, and data were analyzed using the Kruskal-Wallis test. All concentrations of ethanol extract of Citrus aurantifolia showed their potential in inhibiting early phase (18 hours) biofilm formation and growth of E. faecalis clinical isolates and ATCC 29212 from planktonic and biofilm masses in vitro. At concentrations 0.5, 2, 6, and 12% have a potent biofilm inhibition, and concentrations of 14% and 16% are moderate (p>0.05:0.091). Extracts with concentrations of 0.5, 2, and 6% were bacteriostatic against the clinical isolate of E. faecalis, and ATCC isolates from planktonic, while concentrations of 12, 14, and 16% were bactericidal (p>0.05:0.548). Specifically, E. faecalis clinical isolates from biofilm masses were only bacteriostatic (p<0.05;0.01). The inhibition of the biofilm from both E. faecalis and the growth of the colony was not significantly different (p>0.05:0.753) and does not positively correlate (r = - 0.095). Citrus aurantifolia has more potent biofilm inhibition against E. faecalis ATCC 29212 (100%) than E. faecalis clinical isolate (75%). The bacteriostatic and bacteriocidal properties of extracts against the E. faecalis from planktonic are more susceptible than those from biofilm mass sources.

Cite this article:
Nur Asmah, Dewi Fatma Suniarti, Endang Winiati Bachtiar, Dewi Angraini Margono, Basri A. Gani. Chemical compounds Anti-bacterial of Citrus aurantifolia Ethanol Extract to Inhibit the Early Biofilm Formation and Growth of Enterococcus faecalis Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(6):2667-4. doi: 10.52711/0974-360X.2022.00446

Nur Asmah, Dewi Fatma Suniarti, Endang Winiati Bachtiar, Dewi Angraini Margono, Basri A. Gani. Chemical compounds Anti-bacterial of Citrus aurantifolia Ethanol Extract to Inhibit the Early Biofilm Formation and Growth of Enterococcus faecalis Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(6):2667-4. doi: 10.52711/0974-360X.2022.00446   Available on:

1.    Jhajharia K, Parolia A, Shetty KV, Mehta LK. Biofilm in endodontics: a review. Journal of International Society of Preventive and Community Dentistry. 2015;5(1):1-12.
2.    Abbas HA, Fathy M. Serry, EL-Masry EM. Biofilms: The Microbial Castle of Resistance. Research Journal Pharmacy and Technology. 2013;6(1): 01-03.
3.    Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. Journal of Endodontic. 2006;32(2):93-8.
4.    Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med. 2004;15(5):308-20.
5.    Estrela C, Sydney GB, Figueiredo JAP, Estrela CRdA. A model system to study antimicrobial strategies in endodontic biofilms. Journal of Applied Oral Science. 2009;17(2):87-91.
6.    Kim S-W, Shin D-H. Antibacterial effect of urushiol on E. faecalis as a root canal irrigant. Restorative dentistry and endodontics 2017;42(1):54-59.
7.    Harishmitha PS, Karthikeyan M, Jayanthkuma. Chlorhexidine and its Role on Oral Health. Research Journal Pharmacy and Technology. 2014;7(12):1492-1493.
8.    Iqbal A. Antimicrobial irrigants in the endodontic therapy. International Journal of Health Sciences. 2012;6(2):186-92.
9.    Neelakantan P, Romero M, Vera J, et al. Biofilms in endodontics—current status and future directions. International Journal of Molecular Sciences. 2017;18(8):1748.
10.    Zareen NI, Prakasam G. Oral Biofilms. Research Journal Pharmacy and Technology. 2016; 9(10):1812-1814.
11.    Deepigaa M. Antibacterial Resistance of Bacteria in Biofilms. Research J. Pharm. and Tech 2017; 10(11): 4019-4023.
12.    Zaki Mubarak, Soraya C. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. F1000Research. 2018;7.
13.    Bolhari B, Sharifian MR, Aminsobhani M, Monsef Esfehani HR, Tavakolian P. Assessing the efficacy of citrus aurantifolia extract on smear layer removal with scanning electron microscope. Iranian Endodontic Journal 2012;7(2):88-97.
14.    Rammo RNN. Bactericidal and Anti-biofilm Formation of Aqueous Plant Extracts against Pathogenic Bacteria. Asian Journal Pharmaceutical Research. 2017; 7(1): 25-29.
15.    Bachtiar EW, Bachtiar BM, Dewiyani S, Surono Akbar SM. Enterococcus faecalis with capsule polysaccharides type 2 and biofilm‐forming capacity in Indonesians requiring endodontic treatment. Journal of investigative and clinical dentistry 2015;6(3):197-205.
16.    Syafriza D, Sutadi H, Primasari A, Siregar Y. Spectrophotometric Analysis of Streptococcus mutans Growth and Biofilm Formation in Saliva and Histatin-5 Relate to pH and Viscosity. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2020;21.
17.    Gani BA, Bachtiar EW, Bachtiar BM. The role of cigarettes smoke condensate in enhanced Candida albicans virulence of salivary isolates based on time and temperature. Journal of International Dental and Medical Research. 2017; 10:769-77.
18.    Bachtiar EW, Dewiyani S, Surono Akbar SM, Bachtiar BM. Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faecalis cps2. Journal of Dental Sciences. 2016;11(3):323-30.
19.    Chung K-S, Hong JY, Lee J-H, et al. β-Caryophyllene in the Essential Oil from Chrysanthemum Boreale Induces G(1) Phase Cell Cycle Arrest in Human Lung Cancer Cells. Molecules (Basel, Switzerland) 2019;24(20):3754.
20.    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 2002;15(2):167-93.
21.    Sura L. Alkhafaji, Abbass M. Kashamar, Ibrahim H. Alkhafaji. Chemical Composition and Antimicrobial Activity of different Solvent Extracts of Carthamus tinctorius Flowers. Research Journal Pharmacy and Technology. 2020; 13(12):6055-6060.
22.    Durbar US, Geetha RV. Antibacterial Effects of South Indian Spices on Oral Microbes. Research Journal Pharmacy and Technology. 2015; 8(8): 1135-1136.
23.    Dammaschke T, Jung N, Harks I, Schafer E. The effect of different root canal medicaments on the elimination of Enterococcus faecalis ex vivo. European Journal of Dentistry. 2013;7(04):442-48.
24.    Tuson HH, Weibel DB. Bacteria–surface interactions. Soft matter. 2013;9(17):4368-80.
25.    Bowden GH, Hamilton IR. Survival of oral bacteria. Critical Reviews in Oral Biology and Medicine.1998;9(1):54-85.
26.    Li Y-H, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors. 2012;12(3):2519-38.
27.    Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infection and Immunity. 2004;72(10):6032-39.
28.    Jin Q, Kirk MF. pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Frontiers in Environmental Science. 2018; 6:21.
29.    Roy H, Dare K, Ibba M. Adaptation of the bacterial membrane to changing environments using aminoacylated phospholipids. Molecular Microbiology. 2009;71(3):547-50. 06563.x
30.    Pereira SA, Alves Â, Ferreira V, Teixeira PCM. The Impact of environmental stresses in the virulence traits of Listeria monocytogenes relevant to Food Safety. Listeria Monocytogenes. 2018:89.
31.    Alberts B, Johnson A, Lewis J, et al. Ion channels and the electrical properties of membranes. Molecular Biology of the Cell. 4th edition: Garland Science; 2002.20-40.
32.    Brizi L, Giampieri E, Fantazzini P, et al. Water exchange between intra and extracellular compartments studied by nuclear magnetic resonance relaxometry and optical microscopy. Journal of Physics D: Applied Physics. 2019;53(8):085401.
33.    Do H, Makthal N, Vander Wal AR, et al. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nature Communications. 2019;10(1):1-14.
34.    Garsin DA, Frank KL, Silanpää J, et al. Pathogenesis and models of enterococcal infection. Enterococci: From commensals to leading causes of drug resistant infection [Internet]: Massachusetts Eye and Ear Infirmary; 2014.
35.    Hornef MW, Wick MJ, Rhen M, Normark S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nature immunology. 2002;3(11):1033-40.
36.    Hemalatha M, Arirudran B, Thenmozhi A, Mahadeva Rao US. Antimicrobial Effect of Separate Extract of Acetone, Ethyl Acetate, Methanol and Aqueous from Leaf of Milkweed (Calotropis gigantea L.). Asian Journal Pharmaceutical Research. 2011; 1(4): 102-107.
37.    Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003;67(4):593-656.
38.    Mohite SA, Shah RR, Patel NR. Antimicrobial Activity of Leaves extracts of Jatropha curcas. Asian Journal Pharmaceutical Research. 2018; 8(1):17-20.
39.    Galley NF, O’Reilly AM, Roper DI. Prospects for novel inhibitors of peptidoglycan transglycosylases. Bioorganic Chemistry 2014; 55:16-26.
40.    Rosen E, Tsesis I, Elbahary S, Storzi N, Kolodkin-Gal I. Eradication of Enterococcus faecalis Biofilms on Human Dentin. Frontiers in Microbiology. 2016;7(2055).
41.    Leiman SA, May JM, Lebar MD, et al. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. Journal of Bacteriology. 2013;195(23):5391-95.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available