Author(s): Haider Qassim Raheem, Ehasn F. Hussein, Ahmed Hameed Rasheed, Najwan K. Imran

Email(s): haiderbio412@gmail.com , ehsan.f.hussein@gmail.com , alhly612@gmail.com , najwankadhim.imra@uobabylon.edu.iq

DOI: 10.52711/0974-360X.2022.00401   

Address: Haider Qassim Raheem1, Ehasn F. Hussein2, Ahmed Hameed Rasheed3, Najwan K. Imran4
1,3,4DNA Research Center, University of Babylon, Hilla, Babylon, Iraq.
2College of Medicine of Hamorabi University of Babylon, Hilla, Babylon, Iraq.
*Corresponding Author

Published In:   Volume - 15,      Issue - 6,     Year - 2022


ABSTRACT:
This study aimed to assess antibiotics resistance and antibacterial action of silver nanoparticles against Staphylococcus aureus isolated from wound infection. A total of 100 samples of wound swab existed calm since wound patients who stayed the Al-Hillah, Teaching Hospital (wound unit) in, Babylon province, Iraq. S aureus was recognized biochemically and morphologically. A whole of 30(30%) of the whole specimens tested confident for S.aureus. Available of 30 S.aureus isolates, 8(26.6 percent) were MRSA. Antibiotic susceptibility for 8 antibiotics for MRSA that appeared to Penicillin G and Cefoxitin was tested, and all isolates were resistant (100percent), Were susceptible to Rifampin, Tetracycline, and Ciprofloxacin (62.5percent) Clindamycin sensitivity remained experimental in 75% isolates. Resistance to Erythromycin remained establish in approximately 62.5 percent of the population. Gentamycin resistance was found in 50% of the isolates. The antibacterial activity of silver nanoparticles (AgNPs) alongside S.aureus demonstrates extreme broad-range antibacterial act in contradiction of recognized bacteria, with an rise inhibition zone diameter related to nanoparticle concentration The MIC of Ag NPs ranged from 50 to 100g/ml, while the MBC ranged from 100 to 200g/ml. Ag NPs is suggested as an effective anti-MRSA alternative. This experiment discovered that Ag NPs is highly recommended as an alternative anti-MRSA agent with significant inhibitory and antibacterial effect due to the methicillin resistant strains' high rate of resistance to Penicillin G and Cefoxitin (100%), Erythromycin (62.5%), and Gentamycin resistance (50%).


Cite this article:
Haider Qassim Raheem, Ehasn F. Hussein, Ahmed Hameed Rasheed, Najwan K. Imran. Antibacterial action of Silver Nanoparticles against Staphylococcus aureus Isolated from wound infection. Research Journal of Pharmacy and Technology. 2022; 15(6):2413-6. doi: 10.52711/0974-360X.2022.00401

Cite(Electronic):
Haider Qassim Raheem, Ehasn F. Hussein, Ahmed Hameed Rasheed, Najwan K. Imran. Antibacterial action of Silver Nanoparticles against Staphylococcus aureus Isolated from wound infection. Research Journal of Pharmacy and Technology. 2022; 15(6):2413-6. doi: 10.52711/0974-360X.2022.00401   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-6-5


REFERENCES:
1.    Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angewandte Chemie International Edition. 2014; 53(34):8840-69. doi.org/10.1002/anie. 201310843
2.    Bachhav PA, Shroff RM, Shirkhedkar AA. Silver nanoparticles: A comprehensive review on mechanism, synthesis and biomedical applications. Asian Journal of Pharmaceutical Research. 2020; 10(3):202-12.doi.org/ 10.5958/2231-5691.2020.00035.0
3.    Derayea SM, Omar MA, Abdel-Lateef MA. Nano-level detection of certain beta-blockers based on surface plasmon resonance band of silver nanoparticles; Application to content uniformity test. Asian Journal of Pharmaceutical Analysis. 2016; 6(4):193-200. doi.org/10.5958/2231-5675.2016.00029.6
4.    Kumaresn K, Parthiban D, Sivanarayan V, Arun N, Kumaravel P. Toxicity Effect of Copper oxide Nanoparticles on Artemia salina. Research Journal of Pharmacology and Pharmacodynamics. 2015; 7(2):53-60. doi.org/10.5958/2321-5836.2015.00012.9
5.    Kumar SS, Melchias G, Ravikumar P, Chandrasekar R, Kumaravel P. Bioinspired synthesis of silver nanoparticles using Euphorbia hirta leaf extracts and their antibacterial activity. Asian Journal of Pharmaceutical Research. 2014; 4(1):39-43.
6.    Lubna Abdulazeem, Mohammad J. AL Jassani, Mustafa A. Al-Sheakh. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Cuminum cyminum (Cumin) seed Extract. Research Journal of Pharmacy and Technology.2021; 14(8):4349-4. doi: 10.52711/0974-360X.2021.00755
7.    GnanaJobitha G, Annadurai G, Kannan C. Green synthesis of silver nanoparticle using Elettaria cardamom and assessment of its antimicrobial activity. Int. J. Pharma Sci. Res.(IJPSR). 2012; 3(3):323-30.
8.    Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry.2017; 10(6):862-76.doi.org/ 10.1016 /j.arabjc.2015.08.008
9.    Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology. 2018 ;13(1):65-71. doi.org/10.1038/s41565-017-0013-y
10.    Quinteros MA, Aristizábal VC, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicology in vitro. 2016;36:216-23. doi.org/10.1016/j.tiv.2016.08.007
11.    Karthick K, Kumaravel P, Hemalatha P, Thamaraiselvi L. Mechanistic aspects: Biosynthesis of Silver nanoparticles from Proteus mirabilis and its antimicrobial study. Research Journal of Science and Technology. 2013; 5(2):235-8.
12.    Kumar SS, Melchias G. Characterization of Biologically Synthesized Silver Nanoparticles from Euphorbia hirta. Asian Journal of Pharmacy and Technology. 2014; 4(1):1-5.
13.    Raheem HQ, Al-Thahab AA, Abd FG. Different methods for detection sliver nanoparticles produced by proteus mirabilis bacteria. International Journal of Pharm Tech Research. 2016; 9(4):368-76.
14.    Du J, Singh H, Yi TH. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess and Biosystems Engineering. 2016; 39(12):1923-31.doi.org /10.1007/s00449-016-1666-x
15.    Kambar Y, Asha MM, Chaithra M, Prashith KT. Antibacterial activity of leaf and flower extract of Quisqualis indica Linn. against clinical isolates of Staphylococcus aureus. Research Journal of Science and Technology. 2014; 6(1):23-4.
16.    Gupta SS. UV radiation effect on growth and survival of bacteria Staphylococcus aureus. Asian Journal of Pharmaceutical Analysis. 2021; 11(1). doi.org/10.22159/ajpcr.2021.v14i1.39992.
17.    Luong TT, Ouyang S, Bush K, Lee CY. Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. Journal of Bacteriology. 2002; 184(13):3623-9. doi.org/10.1128/JB.184.13.3623-3629.2002
18.    Elsayed S, Laupland KB. Emerging gram-positive bacterial infections. Clinics in Laboratory Medicine. 2004; 24(3):587-603.doi.org/10.1016/j.cll.2004.05.007
19.    Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, Chow H, Ip M, Jatzwauk L, Jonas D, Kadlec K. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PloS one. 2011; 6(4):e17936.11.doi.org/10.1371/journal.pone.0017936
20.    Talan DA, Staatz DI, Staatz AN, Overturf GD. Frequency of Staphylococcus intermedius as human nasopharyngeal flora. Journal of Clinical Microbiology. 1989; 27(10):2393. doi.org/10.1371/ journal. pone.0017936
21.    Bayer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966 Mar; 45(4):4936.doi.org/10.1021/jo00054a013
22.    Elcocks E, Adukwu EC. Laboratory evaluation of the Sigma Transwab® transport system for the recovery of Candida species using the Clinical and Laboratory Standards Institute (CLSI) document M40-A2. European Journal of Clinical Microbiology & Infectious Diseases.2021; 40(4):735-8. doi.org/10.1007/s10096-020-04062-9
23.    Al-Jassani MJ, Raheem HQ. Anti-bacterial activity of CuO nanoparticles against some pathogenic bacteria. International Journal of Chem Tech Research. 2017; 10(2):818-22.
24.    Rao GG, Wong J. Interaction between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). Journal of Hospital Infection. 2003; 55(2):116-8.
25.    Al-Jundiy AS. Immunological Study on TSS-1 toxin extracted from Staphylococcus aureus Isolated from infected wounds (Doctoral dissertation, Ph. D. Thesis.2005. College of Science/AL-Mustansyria University. Iraq).
26.    Sauer P, Síla J, Štosová T, Večeřová R, Hejnar P, Vágnerová I, Kolář M, Raclavský V, Petrželová J, Lovečková Y, Koukalova D. Prevalence of genes encoding extracellular virulence factors among meticillin-resistant Staphylococcus aureus isolates from the University Hospital, Olomouc, Czech Republic. Journal of Medical Microbiology. 2008; 57(4):403-10. doi.org/10.1099/jmm.0.47413-0
27.    Raheem QH, Al-Thahab A, Abd FG. Antibacterial Activity of Silver Nanoparticles Extracted from Proteus mirabilis an d Healing the Wound in Rabbit. Biochem. Cell. Arch. 2018; 18(1):97-104.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available