Author(s): Urmi Roy, Ushri Roy

Email(s): royushri@gmail.com

DOI: 10.52711/0974-360X.2022.00432   

Address: Urmi Roy1, Ushri Roy2
1Department of Botany, Vijaygarh Jyotish Ray College, 8/2, Bijoygarh, Jadavpur, Kolkata, West Bengal 700032.
2Department of Botany, Bhairab Ganguly College, Belgharia, 2, Feeder Rd, Beehive Garden, Belghoria, Kolkata, West Bengal 700056.
*Corresponding Author

Published In:   Volume - 15,      Issue - 6,     Year - 2022


ABSTRACT:
Polyamines (PA) are found in all organisms. Polyamines are small aliphatic amines that have more than two amine groups. There are three main polyamines that are found in plants namely putrescine, spermidine and spermine. They can exist in both free and combined forms. In the regulation of growth, development, polyamines have regulatory roles. Polyamines also help plants in biotic and abiotic stress. Being positively charged, polyamines have the ability to interact with negatively charged sites in molecules such as nucleic acids, proteins, and lipids. Polyamines correlate with numerous vital biochemical functions, including protein regulation, regulation of chemiosmosis, and photoprotection in chloroplasts, ATP synthesis, ion channeling, and membrane fluidity. Through various studies it has been observed that exogenous PA application not only helped the plant to tolerate but also gave the plant resistance to several abiotic stresses (e.g. salinity, drought, water logging, osmotic stress, heavy metals, and extreme temperatures). Vigna radiata is native to India and is known as mung bean, mung dal, moong dal, mash bean, green gram, golden gram, and green soy. It is a major supplement of protein in vegetarian diets. Essential amino acids are present in good quantities among which Arginine, Phenylalanine, Leucine, Lysine are noteworthy. Vigna radiata is also a good source of vitamin, mineral and trace element as well as dietary fibres. Some varieties of mung bean possess excellent aroma and are called Sona mung (B1 variety). The present investigators have used the Sona mung for the study of polyamine in Vigna radiata along with other four different varieties, during the growth and development.


Cite this article:
Urmi Roy, Ushri Roy. Polyamines in Vigna radiata (L.) Wilczek plant growth and development. Research Journal of Pharmacy and Technology. 2022; 15(6):2585-1. doi: 10.52711/0974-360X.2022.00432

Cite(Electronic):
Urmi Roy, Ushri Roy. Polyamines in Vigna radiata (L.) Wilczek plant growth and development. Research Journal of Pharmacy and Technology. 2022; 15(6):2585-1. doi: 10.52711/0974-360X.2022.00432   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-6-36


REFERENCES:
1.    Chandana O.S.S., Ravichandra R.B. Method Development and Validation of Valsartan and Its Impurities by High Performance Liquid Chromatography. Asian J. Pharm. Ana. 2017; 7(2): 87-92.
2.    Pramod K., Amar Deep A., Pooja K., Singh A.M. An Overview: LC-MS as Tool of sample Extraction and Quantification in Bioanalytical Laboratories. Asian J. Pharm. Ana. 2020;10(3):165-172.
3.    Kong L., Attree S.M. and Fowke L.C. Effects of polyethylene glycol and methylglyoxal bis (guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Sci. 1998; 133: 211– 220. https://doi.org/10.1016/S0168-9452(98)00040-5.
4.    Grimes H.D., Slocum R.D. and Boss W.F. α-Difluoromethylarginine treatment inhibits protoplast fusion in fusogenic wild carrot protoplasts. Biochim. Biophys. Acta. 1986; 886: 130–134. doi.org/10.1016/0167-4889(86)90218-1.
5.    Tiburcio A.F., Campos J.L., Figueras X. and Besford R.T. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul. 1993; 12: 331–340.
6.    Torrigiani P., Altamura M.M., Capitani F., Serafini-Fracassini D. and Bagni N. De novo root-formation in thin cell-layers of tobacco - changes in free and bound polyamines. Physiol. Plant. 1989; 77: 294–301. doi.org/10.1111/j.1399-3054.1989.tb05644.x
7.    Galston A.W and Kaur-Sawhney R. Polyamines in plant physiology. Plant Physiol. 1990;94: 406-410. doi.org/10.1104/pp.94.2.406.
8.    Kumar A., Altabella T., Taylor M.A. and Tiburcio A.F. Recent advances in polyamine research. Trends Plant Sci. 1997; 2: 124–130. doi.org/10.1016/S1360-1385(97)01013-3.
9.    Mukhitdinova B.А., Ergozhin E.E., Nikitina А.I., Chalov T.K., Kovrigina T.V., Tasmagambet A.T., Ismailova K.K. Cu (II) Ion Sorption by Way of Redox Polymers on the Basis of Polyamines and Tetrachloro-p-Benzoquinone. Asian J. Research Chem. 2013; 6(7): 659-662.
10.    Evans P.T. and Malmberg R.L. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989; 40: 235-269.
11.    Tiburcio A.F, Kaur-Sawhney R. and Galston A.W. Polyamine metabolism. In: Intermedatory Nitrogen Metabolism. 1990. The Biochemistry of Plants. Miflin BJ. and Lea PJ (Ed). Academic Press. 283-325.
12.    Slocum R.D. Polyamine biosynthesis in plants. In: Biochemistry and Physiology of Polyamines in Plants. Slocum RD and Flores HE (Ed). 1991a; CRC Press, Boca Raton, FL, USA. 22-40.
13.    Martin-Tanguy J. Metabolism and function of polyamines in plants: Recent development (new approaches). Plant Growth Regul. 2001; 34: 135-148. doi.org/10.1023/A:1013343106574.
14.    Kaur-Sawhney R. and Galston A.W. Physiological and biochemical studies on antisenescence properties of polyamines in plants; in Biochemistry and physiology of polyamines in plants (eds) R D Slocum and H E Florse (Boca Raton: CRC Press). 1991; 201–211.
15.    Montague M.J., Koppenbrink J.W. and Jaworski E.G. Polyamine metabolism in embryogenic cells of Daucus carota. Plant Physiol. 1978; 62: 430-433. doi.org/10.1104/pp.62.3.430.
16.    Feirer R.P, Mignon G. and Litvay J.D. Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science. 1984; 223: 1433-1434. doi: 10.1126/science.223.4643.1433.
17.    Heimer Y.M and Mizrahi Y. Characterization of ornithine decarboxylase of tobacco cells and tomato ovaries. Biochem J. 1982; 201: 373-376. doi.org/10.1042/bj2010373.
18.    Slocum R.D. and Galston A.W. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues. Plant Cell Physiol. 1985a; 26, 1519–1526. doi.org/10.1093/oxfordjournals.pcp.a077054.
19.    Kakkar R.J. and Rai V.K. Plant polyamines in flowering and fruit ripening. Phytochemistry. 1993; 33: 1281-1288. doi.org/10.1016/0031-9422(93)85076-4.
20.    Bais H.P. and Ravishankar G.A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue and Organ Culture. 2002; 69: 1-34. doi.org/10.1023/A:1015064227278.
21.    Mukhitdinova B.A., Ergozhin E.E., Solov’yova А.B., Nikitina А.I., Ismailova Kh.K., Tasmagambet A. Sorption of Сr (VI) Ions by Chlorine-containing Redox Polymers based on Weak-Base Polyamines. Asian J. Research Chem. 2015; 8(10): 609-612. doi:10.5958/0974-4150.2015.00096.6.
22.    Altman A., Friedman R. and Levin N. Arginine and Ornithine Decarboxylases, the Polyamine Biosynthetic Enzymes of Mung Bean Seedlings. Plant Physiol. 1982; 69 (4):876-879. doi.org/10.1104/pp.69.4.876.
23.    Goldberg R. and Perdrizet E. Ratio of free to bound polyamines during maturation in mung-bean hypocotyl cells. Planta. 1984; 161: 531-535. doi.org/10.1007/BF00407085.
24.    Friedman R., Levin N. and Altman A. Presence and Identification of Polyamines in Xylem and Phloem Exudates of Plants. Plant Physiol. 1986; 82(4):1154-1157. doi.org/10.1104/pp.82.4.1154.
25.    Ziosi V., Scaramagli S., Bregoli A.M., Biondi S. and Torrigiani P. Peach (Prunus persica L.) fruit growth and ripening: transcript levels and activity of polyamine biosynthetic enzymes in the mesocarp. Journal of Plant Physiology. 2003; 9: 1109-1115. doi.org/10.1078/0176-1617-00924.
26.    Huang C.K., Chang B.S., Wang K.C., Her S.J., Chen Y.A., Cho C.L., Huang K.L., Chen W.S. and Liu Z. H. Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa. Journal of Plant Physiology. 2004; 161 (6): 709-713. doi.org/10.1078/0176-1617-01256.
27.    Maki H. and Morohashi Y. Inhibitory effect of polyamines on the activity of endopeptidase in mung bean cotyledons. Journal of Plant Physiology. 2002; 159 (12): 1341-1347. doi.org/10.1078/0176-1617-00876
28.    Cohen S. S. A Guide to the Polyamines. Oxford University Press. 1998. New York, NY.
29.    Bezold T.N., Loy J.B. and Minocha S.C. Changes in the cellular content of polyamines in different tissues of seed and fruit of a normal and a hull-less seed variety of pumpkin during development. Plant Sci. 2003; 164: 743–752. doi.org/10.1016/S0168-9452(03)00035-9.
30.    Nilima T., Pranali S., Madhura T. Medicinal plant as a source of Antipyretic drug: A Review. Asian J. Pharm. Tech. 2021; 11(1):84-87. doi: 10.5958/2231-5713.2021.00014.3.
31.    Malathi R., Cholarajan A., Karpagam K., Jaya K.R., Muthukumaran P. Antimicrobial Studies on Selected Medicinal Plants (Coleus amboinicus, Phyla nodiflora and Vitex negundo). Asian J. Pharm. Tech. 1(2): April-June 2011; Page 53-55.
32.    Christy. S, Nivedhitha. M. S. Antimicrobial Efficacy of Azadirachta indica against Streptococcus mutans– An In vitro Study. Asian J. Pharm. Tech. 2019; 9(3):149-153. doi : 10.5958/2231-5713.2019.00025.4.
33.    Serafini-Fracassini D. Cell cycle-dependent changes in plant polyamine metabolism. In: Biochemistry and Physiology of Polyamines in Plants. Eds. R. Slocum and H. Flores, CRC Press. 1991; 159–173.
34.    Pfosser M., Konigshoffer H. and Kandeler R. Free, conjugated and bound polyamines during the cell cycle of synchronized cell suspension cultures of Nicotiana tabacum. J. Plant Physiol. 1990; 136: 574–579. doi.org/10.1016/S0176-1617(11)80216-6.
35.    Das D. and Das A. Statistics in Biology and Psychology. 1998; 3rd edition. Academic Publishers
36.    Carbonell J. and Navarro J. L. Correlation of spermine levels with ovary senescence and with fruit set and development in Pisum sativum L. Planta. 1989; 178: Pages 482-487. doi.org/10.1007/BF00963818.
37.    Geny L., Broquedis M., Martin-Tanguy J. and Bouard J. Free, conjugated, and wall-bound polyamines in various organs of fruiting cuttings of Vitis vinifera L. cv. Cabernet Sauvignon. Am. J. Enol. Vitic. 1997; 48(1):80-84.
38.    Vanildo S., Tiago S.B., Santa-Catarina C., Floh E. I.S., Guerra M. P. and Handro W. Biochemical changes during seed development in Pinus taeda L. Plant Growth Regulation. 2004; 44: 147–156. doi.org/10.1007/s10725-004-2601-8.
39.    Bewley J.D. and Black M. Seeds Physiology of Development and Germination. 1994. Plenum Press, New York. ISBN 0-306-44747-9.
40.    Nitin M., Ifthekar S., Mumtaz M. Protective Effect of Aqueous Extract of Seeds of Vigna mungo (Linn) Hepper on Ethanol-Induced Hepatotoxicity in Albino Rats. Research J. Pharm. and Tech. 2012;5(6):780-784.
41.    Spandana. K, Shivani. M, Himabindhu. J, Ramanjaneyulu. K. Evaluation of In Vitro Antiurolithiatic Activity of Vigna radiata. Research J. Pharm. and Tech 2018; 11(12): 5455-5457. doi : 10.5958/0974-360X.2018.00994.0.
42.    Arulmozhi R, Kannahi M. Formulation of Rhizobial Fertilizer for Leguminous Plant Vigna mungo Growth. Research J. Pharm. and Tech. 2020; 13(10):4594-4598. doi:10.5958/0974-360X.2020.00809.4.
43.    Siddappa N, Devaraj V.R. Quantitative Analysis of Polyamines in Paspalum scrobiculatum under Drought and Salt Stress. Asian J. Research Chem. 2014; 7 (11): 933-939.
44.    Fugeng Z., Xiaoyun W., Hanzhong W. and Guozhen Z. The Changes of Polyamine Metabolism in the Process of Growth and Development of Peanut Leaves. Acta Agronomica Sinica. 1999; 25 (2): 249-253.
45.    Shiozaki S., Ogata T. and Horiuchi S. Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Scientia Horticulturae. 2000; 83 (1): 33-41. doi.org/10.1016/S0304-4238(99)00064-3.
46.    Zhang Z., Honda C., Kita M., Hu C., Nakayama M. and Moriguchi T. Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing. Molecular Genetics and Genomics. 2003; 268(6): 799-807. doi.org/10.1007/s00438-002-0802-2.
47.    Fujihara S. and Yoneyama T. Endogenous levels of polyamines in the organs of cucumber plant (Cucumis sativus) and factors affecting leaf polyamine contents. Physiol Plant. 2001; 113(3):416-423. doi.org/10.1034/j.1399-3054.2001.1130316.x.
48.    Lahiri K, Chattopadhyay S and Ghosh B. Correlation of endogenous free polyamine levels with root nodule senescence in different genotypes in Vigna mungo L. Journal of Plant Physiology. 2004; 161(5): 563-571. doi.org/10.1078/0176-1617-01057.
49.    Alburquerque N., Egea J., Burgos L., Martinez-Romero D., Valero D. and Serrano M. The influence of polyamines on apricot ovary development and fruit set. 2006; 149 (1): 27-33. doi.org/10.1111/j.1744-7348.2006.00067.x.
50.    Fraga M.F. Changes in polyamine concentration associated with aging in Pinus radiata and Prunus persica. Tree Physiol. 2004; 24: 1221–1226. doi.org/10.1093/treephys/24.11.1221.
51.    Galston A.W. Polyamines as modulators of plant development. BioScience. 1983; 33: 382–388. doi.org/10.2307/1309107.
52.    Casas J.L., Acosta M., Del Rio J. A. and Sabater F. Ethylene evolution during ripening of detached tomato fruit: Its relation with polyamine metabolism. Plant Growth Regul. 1990; 9: 89–96. doi.org/10.1007/BF0002743.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available