Author(s):
Budi Arief Waskito, Djanggan Sargowo, Umi Kalsum, Askandar Tjokroprawiro
Email(s):
budiariefwaskito@gmail.com
DOI:
10.52711/0974-360X.2022.00398
Address:
Budi Arief Waskito1,2*, Djanggan Sargowo3, Umi Kalsum4, Askandar Tjokroprawiro5
1Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
2Department of Internal Medicine, Faculty of Medicine, Wijaya Kusuma University, Surabaya, East Java, Indonesia.
3Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya/Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia.
4Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
5Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo Hospital, Surabaya, East Java, Indonesia.
*Corresponding Author
Published In:
Volume - 15,
Issue - 6,
Year - 2022
ABSTRACT:
Ipomoea batatas L purple variant is a natural source of bioactive compounds with strong antioxidant activity and has long been used in folk medicine. This study aimed to evaluate the active compounds, antioxidant, and anti-inflammatory activities of Ipomoea batatas L purple variant leaf extract in rats fed a high-fat diet. The presence of active compounds in the Ipomoea batatas L purple variant was determined by liquid chromatography high resolution mass spectrometry (LC-HRMS). The rats were divided into five experimental groups of six animals in each group. Namely standard diet/normal group (SD), high-fat diet group (HFD), and HFD plus extracts (625; 1250; or 2500 mg/kg) groups for twelve weeks. The effect of leaf extract on antioxidant activity was analyzed using the DPPH assay, while oxidative stress and anti-inflammatory analysis were performed by immunohistochemistry. LC-HRMS analysis showed six active compounds were identified from Ipomoea batatas L. Besides, there is a reduction in oxidative stress through malondialdehyde (MDA) expression on the oral supplementation with Ipomoea batatas leaf purple variant extract doses of 1250 and 2500 mg/kg body weight. Meanwhile, all extract doses can significantly increase antioxidant activities such as nuclear factor-erythroid 2 related factor 2 (Nrf-2) expression, superoxide dismutase 2 (SOD2) expression, and decrease pro-inflammatory such as tumor necrosis factor alpha (TNF-a) expression in the aorta. Taken together, these findings provide a basis for the recommendation of compounds from the supplementation of an Ipomoea batatas L purple variant leaf extract can be an alternative herbal therapy to inhibit the harmful effects of a high-fat diet.
Cite this article:
Budi Arief Waskito, Djanggan Sargowo, Umi Kalsum, Askandar Tjokroprawiro. The Role of Ipomoea batatas Leaves Extract as a Potent Antioxidant and Anti-inflammatory in Rats Fed High-fat Diet. Research Journal of Pharmacy and Technology. 2022; 15(6):2395-1. doi: 10.52711/0974-360X.2022.00398
Cite(Electronic):
Budi Arief Waskito, Djanggan Sargowo, Umi Kalsum, Askandar Tjokroprawiro. The Role of Ipomoea batatas Leaves Extract as a Potent Antioxidant and Anti-inflammatory in Rats Fed High-fat Diet. Research Journal of Pharmacy and Technology. 2022; 15(6):2395-1. doi: 10.52711/0974-360X.2022.00398 Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-6-2
REFERENCES:
1. Khan TJ, Ahmed YM, Zamzami MA, Mohamed SA, Khan I, Baothman OAS, et al. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci Rep. 2018; 8(1):1–9. https://doi.org/10.1038/s41598-017-19013-2
2. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012; 6(11):1–5. https://doi.org/10.4103/0973-7847.95849
3. Shah VV, Shah ND, Patrekar PV. Medicinal plants from solanaceae family. Res J Pharm Technol. 2013; 6(2):143–51.
4. Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014; 31(1):35–60. https://doi.org/10.1039/c3np70058e
5. Mujum A, Khan W, Shaikh T, Rub R. Pharmacognostic and Preliminary Phytochemical Investigation of Argyreia nervosa Roots (Convolvulaceae). Res J Pharmacogn Phytochem. 2010; 2(5):359–63.
6. Islam S. Some Bioactive Constituents, Antioxidant, and Antimutagenic Activities in the Leaves of Ipomoea batatas Lam. Genotypes. Am J Food Sci Technol Vol 4, 2016, Pages 70-80. 2016; 4(3):70–80. https://doi.org/10.12691/ajfst-4-3-3
7. Sathish R, Jeyabalan G. Anti- Lithiatic Effect of Ipomoea batatas (L) Leaves and Tuberous Roots on Ethylene Glycol Induced Urolithiasis in Rats. Res J Pharmacol Pharmacodyn. 2018; 10(1):1. https://doi.org/10.5958/2321-5836.2018.00001.0
8. Yong H, Wang X, Sun J, Fang Y, Liu J, Jin C. Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China. Int J Biol Macromol. 2018; 120(1):1632–8. https://doi.org/10.1016/j.ijbiomac.2018.09.182
9. Mustaffa NAN, Khairi NSM, Zolkiffli FF, Alikasturi AS, Anuar MR, Shaharuddin S. Characterisation of Maltodextrin-Edible Coated Purple Sweet Potato Chips; Effect of Calcium Chloride Concentration. Mater Today Proc. 2019; 19:1481–8. https://doi.org/10.1016/j.matpr.2019.11.172
10. Kim H-J, Woo KS, Lee H-U, Nam SS, Lee BW, Kim MY, et al. Physicochemical Characteristics of Starch in Sweet Potato Cultivars Grown in Korea. Prev Nutr Food Sci. 2020; 25(2):212–8. https://doi.org/10.3746/pnf.2020.25.2.212
11. Chakraborty P, Sharma S, Chakraborty S, Siddapurand A, Abraham J. Cytotoxicity and antimicrobial activity of Ipomoea batatas. Res J Pharm Technol. 2018; 11(7):2741–6. https://doi.org/10.5958/0974-360X.2018.00506.1
12. Zhi Q, Lei L, Li F, Zhao J, Yin R, Ming J. The anthocyanin extracts from purple-fleshed sweet potato exhibited anti-photoaging effects on ultraviolent B-irradiated BALB/c-nu mouse skin. J Funct Foods. 2020; 64:103640. https://doi.org/10.1016/j.jff.2019.103640
13. Suresh PK, Sah AK, Daharwal SJ. Role of free radicals in ocular diseases: An overview. Res J Pharm Technol. 2014; 7(11):1330–44.
14. Madkour MI, T. El-Serafi A, Jahrami HA, Sherif NM, Hassan RE, Awadallah S, et al. Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. Diabetes Res Clin Pract. 2019; 155:107801. https://doi.org/10.1016/j.diabres.2019.107801
15. Jimoh A, Tanko Y, Ahmed A, Mohammed A, Ayo JO. Resveratrol prevents high-fat diet-induced obesity and oxidative stress in rabbits. Pathophysiology. 2018; 25(4):359–64. https://doi.org/10.1016/j.pathophys.2018.07.003
16. Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxidants Redox Signal. 2011; 15(6):1583–606. https://doi.org/10.1089/ars.2011.3999
17. Wang L, Li YM, Lei L, Liu Y, Wang X, Ma KY, et al. Purple sweet potato anthocyanin attenuates fat-induced mortality in Drosophila melanogaster. Exp Gerontol. 2016; 82:95–103. https://doi.org/10.1016/j.exger.2016.06.006
18. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013; 53:401–26. https://doi.org/10.1146/annurev-pharmtox-011112-140320
19. Ryoo I, Kwak M-K. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol. 2018; 359:24–33. https://doi.org/10.1016/j.taap.2018.09.014
20. Vendrov AE, Sumida A, Canugovi C, Lozhkin A, Hayami T, Madamanchi NR, et al. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis. Redox Biol. 2019; 21(101063). https://doi.org/10.1016/j.redox.2018.11.021
21. Gomes JVP, Rigolon TCB, Souza MS da S, Alvarez-Leite JI, Lucia CM Della, Martino HSD, et al. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition. 2019; 66:192–202.
22. Maharani M, Lajuna L, Yuniwati C, Sabrida O, Sutrisno S. Phytochemical characteristics from Phaleria macrocarpa and its inhibitory activity on the peritoneal damage of endometriosis. J Ayurveda Integr Med. 2020; 12(4):13–7. https://doi.org/10.1016/j.jaim.2020.06.002
23. Concepción S-M, José AL, Fulgencio S-C. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture. J Sci Food Agric. 1998; 76(2):270–6.
24. Wagner RA. List of Anesthetic, Analgesic and Tranquilizer Drugs Frequently Used with the Common Laboratory Species. Upitt. 2016; :1–25.
25. Li G, Lin Z, Zhang H, Liu Z, Xu Y, Xu G, et al. Anthocyanin Accumulation in the Leaves of the Purple Sweet Potato (Ipomoea batatas L.) Cultivars. Molecules. 2019; 24(3743):1–13.
26. Jung YS, Kim SJ, Kwon DY, Ahn CW, Kim YS, Choi DW, et al. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food Chem Toxicol. 2013; 62(9):292–8. https://doi.org/10.1016/j.fct.2013.08.049
27. Khalili M, Alavi M, Esmaeil-Jamaat E, Baluchnejadmojarad T, Roghani M. Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int Immunopharmacol. 2018; 61(9):355–62. https://doi.org/10.1016/j.intimp.2018.06.019
28. Agunloye OM, Oboh G, Ademiluyi AO, Ademosun AO, Akindahunsi AA, Oyagbemi AA, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother. 2019; 109(10):450–8. https://doi.org/10.1016/j.biopha.2018.10.044
29. Qiu ZB, Guo JL, Zhu AJ, Zhang L, Zhang MM. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf. 2014; 104(1):202–8. https://doi.org/10.1016/j.ecoenv.2014.03.014
30. Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015; 8(1):1–20. https://doi.org/10.3390/nu8010016
31. Hu Y-H, Chen C-M, Xu L, Cui Y, Yu X-Y, Gao H-J, et al. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biol Technol. 2015; 104:33–41. https://doi.org/10.1016/j.postharvbio.2015.03.007
32. Ishiguro K, Yahara S, Yoshimoto M. Changes in polyphenols content and radical-scavenging activity of sweetpotato (Ipomoea batatas L.) during storage at optimal and low temperatures. J Agric Food Chem. 2007; 55(26):10773–8. https://doi.org/10.1021/jf072256v
33. Lee C-L, Lee S-L, Chen C-J, Chen H-C, Kao M-C, Liu C-H, et al. Characterization of Secondary Metabolites from Purple Ipomoea batatas Leaves and Their Effects on Glucose Uptake. Molecules. 2016; 21(6):745. https://doi.org/10.3390/molecules21060745
34. Hendrawan VF, Wulansari D, Oktanella Y, Widjiati. Effectiveness of chlorogenic acid supplementation on VEGF serum and placental MAP kinase expression in carbon Black-Exposed pregnant rattus norvegicus. Res J Pharm Technol. 2018; 11(5):1830. https://doi.org/10.5958/0974-360X.2018.00340.2
35. Agnieszka Gęgotek, Skrzydlewska E. Biological effect of protein modifications by lipid peroxidation products. Chem Phys Lipids. 2019; 221:46–52.
36. Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients. 2018; 10(10):1–15. https://doi.org/10.3390/nu10101502
37. de Sousa AR, de Castro Moreira ME, Grancieri M, Toledo RCL, de Oliveira Araújo F, Mantovani HC, et al. Extruded sorghum (Sorghum bicolor L.) improves gut microbiota, reduces inflammation, and oxidative stress in obese rats fed a high-fat diet. J Funct Foods. 2019; 58(5):282–91. https://doi.org/10.1016/j.jff.2019.05.009
38. Dziadek K, Kopeć A, Piątkowska E. Intake of fruit and leaves of sweet cherry beneficially affects lipid metabolism, oxidative stress and inflammation in Wistar rats fed with high fat-cholesterol diet. J Funct Foods. 2019; 57(3):31–9. https://doi.org/10.1016/j.jff.2019.03.044
39. Phulera S, Gurung N, Arora KM, Kumar G, Karthik L, Rao KVB. Evaluation of phytochemical composition, antioxidant and cytotoxic activity of ipomoea fistulosa leaves (convolvulaceae). Res J Pharm Technol. 2014; 7(4):454–9.
40. Prasad J, Rao SP, Netam AK, Satapathy T. An Ethnopharmacological Review: On Commonly used Anti-Oxidant Plants with Anti-Hypertensive. Res J Pharmacol Pharmacodyn. 2018; 10(3):125. https://doi.org/10.5958/2321-5836.2018.00024.1
41. Gangoni A, Suneetha B, Sunanda S, Ravindrababu S. Hypolipidemic and Antioxidant Activity of Methanolic Leaf Extract of Ochna obtusata on High Fat Diet Induced Obesity in Rats. Res J Pharmacol Pharmacodyn. 2015; 7(1):1. https://doi.org/10.5958/2321-5836.2015.00001.4
42. Suja C, Shuhaib B, Abdurahman U, Khathoom H, Simi K. A Review on Dietary Antioxidants. Res J Pharm Technol. 2016; 9(2):196. https://doi.org/10.5958/0974-360X.2016.00035.4
43. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552(2):335–44. https://doi.org/10.1113/jphysiol.2003.049478
44. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Vol. 39, International Journal of Biochemistry and Cell Biology. 2007. p. 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
45. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002; 33(3):337–49. https://doi.org/10.1016/S0891-5849(02)00905-X
46. Wang J-M, Chen R-X, Zhang L-L, Ding N-N, Liu C, Cui Y, et al. In vivo protective effects of chlorogenic acid against triptolide-induced hepatotoxicity and its mechanism. Pharm Biol. 2018; 56(1):626–31. https://doi.org/10.1080/13880209.2018.1527370
47. Ali E, Hussain N, Shamsi IH, Jabeen Z, Siddiqui MH, Jiang L xi. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B. 2018; 19(2):130–46. https://doi.org/10.1631/jzus.B1700191
48. Sirota R, Gibson D, Kohen R. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biol. 2015; 4:48–59. https://doi.org/10.1016/j.redox.2014.11.012
49. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013; 85(6):705–17. https://doi.org/10.1016/j.bcp.2012.11.016
50. Cai Z, Song L, Qian B, Xu W, Ren J, Jing P, et al. Understanding the effect of anthocyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice. Food Chem. 2018; 245(7):463–70. https://doi.org/10.1016/j.foodchem.2017.10.119
51. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019; 23(12):101107. https://doi.org/10.1016/j.redox.2019.101107
52. Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, et al. Inflammatory links between high fat diets and diseases. Front Immunol. 2018; 9(11):1–10. https://doi.org/10.3389/fimmu.2018.02649