Author(s): Gopa Roy Biswas, Swetalina Mishra, Abu Sufian

Email(s): goparoy2020@gmail.com

DOI: 10.52711/0974-360X.2022.00392   

Address: Gopa Roy Biswas*, Swetalina Mishra, Abu Sufian
Department of Pharmaceutics, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata – 700114.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Gel-based formulations may be classified as hydrogels, emulgels, and organogels or oleogels. This categorization depends on the polarity of the liquid component present in it. Hydrogels offer excellent potential to be used in oral drug delivery due to inherent biocompatibility, diversity of both natural and synthetic components. In particular, stimuli-responsive hydrogels can meet the physiological changes along the gastro intestinal tract to achieve site-specific, controlled release of protein, peptide and many other molecules for systemic treatment. There are many different techniques for the preparation of different sort of customized hydrogel. In recent years the popularity of oleogels is also in increasing order due to the easy method of preparation and inherent long-term stability of these products to provide the ideal drug delivery matrix. Oleogels are comprised of non-polar dispersion medium like fixed oil, mineral oil, organic solvents which are gelled with organogelator. Most of the studies on oleogels has been conducted on their use in food applications. Hydrogel and oleogel both have good acceptance in the field of oral drug delivery. This review work highlights brief description about both Hydrogels and Oleogels focusing their characteristics, advantages, disadvantages, application, some major techniques of the preparations and modifications of the same in oral drug delivery.


Cite this article:
Gopa Roy Biswas, Swetalina Mishra, Abu Sufian. Gel Based Formulations in Oral Controlled Release Drug Delivery. Research Journal of Pharmacy and Technology. 2022; 15(5):2357-3. doi: 10.52711/0974-360X.2022.00392

Cite(Electronic):
Gopa Roy Biswas, Swetalina Mishra, Abu Sufian. Gel Based Formulations in Oral Controlled Release Drug Delivery. Research Journal of Pharmacy and Technology. 2022; 15(5):2357-3. doi: 10.52711/0974-360X.2022.00392   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-5-74


REFERENCES:
1.    Raza F, Zafar H, Zhu Y, Ren Y, Ullah A, Khan AU, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics. 2018; 10(1):16. doi.org/10.3390/pharmaceutics10010016
2.    Vigata M, Meinert C, Hutmacher DW, Bock N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics. 2020; 12(12):1188. doi.org/10.3390/pharmaceutics12121188
3.    Moroz E, Matoori S, Leroux JC. Oral delivery of macromolecular drugs: Where we are after almost 100 years of attempts. Vol. 101, Advanced Drug Delivery Reviews. 2016 ;101:108-121. doi: 10.1016/j.addr.2016.01.010.
4.    Singh A, Auzanneau FI, Rogers MA. Advances in edible oleogel technologies – A decade in review. Food Research  International Journal. 2017; 97: 307-317. doi:10.1016/j.foodres.2017.04.022
5.    Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Vol. 11, Pharmaceutics. 2019 ;11(3):129. doi: 10.3390/pharmaceutics11030129.
6.    Chen G, Tang W, Wang X, Zhao X, Chen C, Zhu Z. Applications of Hydrogels with Special Physical Properties in Biomedicine. Polymers (Basel). 2019 Aug 29;11(9):1420. doi: 10.3390/polym11091420.
7.    Asawer A. Mhammed Alzayd, Faiq F. Karam . Adsorption of Atenolol drug from Aqueous solution by poly (AAM_MA) hydrogel and used in Drug Delivery System: Study kinetic and Thermodynamic. Research J. Pharm. and Tech. 2019; 12(10):4678-4682. doi: 10.5958/0974-360X.2019.00805.9
8.    Nandhakumar L.,. Dharmamoorthy G,. Chandrasekaran S. Hydrogels: A Multifaceted Contemporary Approaches and Advancements. Research J. Pharm. and Tech. 2011; 4(11): 1658-1662.
9.    Saha S, Kaushik K, Garg R.Formulation of Smart Hydrogel beads for Pharmaceutical Importance. Research J. Pharm. and Tech. 2020; 13(2):901-904. doi: 10.5958/0974-360X.2020.00170.5
10.    Saranya R., Elango K., Devi Damayanthi N., Balaguru A. Formulation and Evaluation of Hydrogel for Stomach Specific Drug Delivery of Lamivudine. Research J. Pharm. and Tech. 2013; 6(7): 740-745.
11.    Venkata Phani Deepthi B., Varun D., Gopal P.N.V., Babu Rao CH., Sumalatha G. Super Porous Hydrogels – Supreme Drug Delivery. Research J. Pharm. and Tech.2011;4(8): 1182-1188.
12.    Tripathi J, Thapa P, Maharjan R, Jeong SH. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics. 2019. ; 11(4): 193. DOI: 10.3390/pharmaceutics11040193
13.    Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters. 2018; 16: 113–146. doi.org/10.1016/j.compositesb.2020.108208
14.    Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 2015; 6: 105-121. doi.org/10.1016/j.jare.2013.07.006
15.    Chloe M. O'Sullivan, Shai Barbut, Alejandro G. Marangoni. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends in Food Science and Technology. 2016;57: 59-73. doi.org/10.1016/j.tifs.2016.08.018
16.    Jung D, Oh I, Lee JH, Lee S. Utilization of butter and oleogel blends in sweet pan bread for saturated fat reduction: Dough rheology and baking performance. LWT. 2020; 125:109194. Doi: 10.1016/j.lwt.2020.109194
17.    Mukherjee S, Ash D, Majee SB, Biswas GR. Studies on Span based Soy-bigels with HPMC. Research J. Pharm. and Tech. 2020; 13(1): 353-360. https://doi.org/10.5958/0974-360X.2020.00071.2
18.    Scharfe M, Ahmane Y, Seilert J, Keim J, Flöter E. On the Effect of Minor Oil Components on β-Sitosterol/γ-oryzanol Oleogels. Eur J Lipid Sci Technol. 2019;121(8). doi.org/10.1002/ejlt.201800487
19.    Rehman K, Amin MCIM, Zulfakar MH. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J Oleo Sci. 2014;63(10). doi: 10.5650/jos.ess14101
20.    Pakseresht S, Mazaheri Tehrani M. Advances in Multi-component Supramolecular Oleogels- a Review. Food Reviews International. 2020: 1-23. doi.org/10.1080/87559129.2020.1742153
21.    Chang SH, Custer PL, Mohadjer Y, Scott E. Use of lorenz titanium implants in orbital fracture repair. Ophthal Plast Reconstr Surg. 2009;25(2):119-22. doi: 10.1097/IOP.0b013e31819ac7c5.
22.    Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Vol. 11, Expert Opinion on Drug Delivery. 2014. 11(6): 901–915. doi: 10.1517/17425247.2014.902047
23.    Li L, Scheiger JM, Levkin PA. Design and Applications of Photoresponsive Hydrogels. Advanced  Materials. 2019;31(26). doi.org/10.1002/adma.201807333
24.    Jorapur D, Nagesh C, Suma N, Chandrasekhara S, Attimarad SL, Kengeri S. Ion sensitive floating in situ gel for controlled delivery of famotidine and domperidone maleate for the treatment of gastro oesophageal reflux disease. Res J Pharm Technol. 2018;11(5):2100-2105. doi.org/10.5958/0974-360X.2018.00389.X
25.    Prannoy T, Lakshmi PK. Design and optimization of hydrodynamically balanced oral in-situ gel of lamotrigine. Res J Pharm Technol. 2020;13(10). doi.org/10.5958/0974-360X.2020.00856.2
26.    John D, Charyulu RN, Ravi GS, Jose J. Nanosponge based hydrogels of etodolac for topical delivery. Res J Pharm Technol. 2020; 13(8):3887-3892. doi: 10.5958/0974-360X.2020.00688.5
27.    Davidovich-Pinhas M. Oleogels: A promising tool for delivery of hydrophobic bioactive molecules. Therapeutic Delivery. 2016; 7.
28.    Jose J, Gopalan K. Organogels: A versatile drug delivery tool in pharmaceuticals. Res J Pharm Tech. 2018; 11: 1242-1246.doi.org/10.5958/0974-360X.2018.00231.7
29.    Tripathi S, Patel S, Patel R, ,Pushpendra  et al. A Review on Biocompatible Hydrogel: Formulation Aspect and Evaluation. Res. J. Pharma. Dosage Forms and Tech.2018; 10(2): 119-122. doi: 10.5958/0975-4377.2018.00019.8
30.    Jain PK, Gilhotra R, Kori ML. Drug Release and Mucoadhesive behavior of Hydrogel in Chemo-Radiotherapy induced Oral Mucositis. Research J. Pharm. and Tech. 2019; 12(6): 2838 – 2846. doi: 10.5958/0974-360X.2019.00478.5
31.    Fonseca-Santos B, Chorilli M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Materials Science and Engineering C Mater Biol Appl. 2018;86: 129-143. doi.org/10.1016/j.msec.2017.12.022
32.    Sosnik A, Imperiale JC, Vázquez-González B, Raskin MM, Muñoz-Muñoz F, Burillo G, et al. Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surfaces B Biointerfaces. 2015;136. doi.org/10.1016/j.colsurfb.2015.10.036
33.    Dinte E, Tomuţǎ I, Iovanov RI, Leucuţa SE. Design and formulation of buccal mucoadhesive preparation based on sorbitan monostearate oleogel. Farmacia. 2013;61(2): 230-244.doi.org/10.1016/j.msec.2018.12.036
34.    Sowjanya M, Debnath S, Lavanya P, Thejovathi R, Babu MN. Polymers used in the Designing of Controlled Drug Delivery System. Res J Pharm Technol. 2017;10(3): 903-912. doi.org/10.5958/0974-360X.2017.00168.8
35.    Desu PK, Pasam V, Kotra V. Formulation and in vitro evaluation of superporous hydrogel based gastroretentive drug delivery system of vildagliptin. J Res Pharm. 2019;23(5): 873-885. doi.org/10.35333/jrp.2019.35
36.    Desu PK, Pasam V, Kotra V. Implications of superporous hydrogel composites-based gastroretentive drug delivery systems with improved biopharmaceutical performance of fluvastatin. J Drug Deliv Sci Technol. 2020;57. DOI: 10.1016/j.jddst.2020.101668
37.    Zhang H, Wang L, Song L, Niu G, Cao H, Wang G, et al. Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. J Appl Polym Sci. 2011;121(1). doi.org/10.1002/app.33653
38.    Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10): 115. doi.org/10.1007/s10856-019-6318-7
39.    Md. Mateen M. Shaikh, Avinash S. Patil, Parmeshwar L. Ajure, Shrikant V. Lonikar. Starch-Acrylic Acid Hydrogel: Preparation and Swelling Characteristics. Research J. Science and Tech. 6(2): 2014; 75-78.
40.    Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L. Nanocellulose-Based Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications. Biomacromolecules. 2016;17(11): :3714-3723. doi: 10.1021/acs.biomac.6b01243
41.    Straccia MC, D’Ayala GG, Romano I, Oliva A, Laurienzo P. Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs. 2015; 13(5):2890-908. doi: 10.3390/md13052890.
42.    Sivakumar PM, Peimanfard S, Zarrabi A, Khosravi A, Islami M. Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy. Anticancer Agents Med Chem. 2020;20(11):1327-1339. doi: 10.2174/1871520619666190906160359.
43.    Sharpe LA, Vela Ramirez JE, Haddadin OM, Ross KA, Narasimhan B, Peppas NA. PH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles. Biomacromolecules. 2018; 19(3):793-802. doi: 10.1021/acs.biomac.7b01590.
44.    Biswas GR, Roy D, Majee SB. Effect of cellulosic polymer on physico mechanical properties of superporous hydrogel of an antihypertensive drug and drug release kinetics from it. Int J Appl Pharm. 2019;11(5): 257-263 . DOI: 10.22159/ijap.2019v11i5.34734
45.    K. Venkata Ramana Reddy, M.V. Nagabhushanam, Eslaveth Ravindar Naik. Swellable hydrogels and cross linking Agents - Their role in drug delivery system. Research J. Pharm. and Tech. 2017; 10(3): 937-943. doi: 10.5958/0974-360X.2017.00172.X.
46.    Khan H, Chaudhary JP, Meena R. Anionic carboxymethylagarose-based pH-responsive smart superabsorbent hydrogels for controlled release of anticancer drug. Int J Biol Macromol. 2019; 124:1220-1229. doi: 10.1016/j.ijbiomac.2018.12.045.
47.    Van den Mooter, G., Vervoort, L. and Kinget, R. Characterization of Methacrylated Inulin Hydrogels Designed for Colon Targeting: In Vitro Release of BSA. Pharm Res.2003; 20:303–307 . https://doi.org/10.1023/A:1022295725841
48.    Amidon S, Brown JE, Dave VS. Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech. 2015; 16(4):731-41. doi: 10.1208/s12249-015-0350-9.
49.    Baus RA, Zahir-Jouzdani F, Dünnhaupt S, Atyabi F, Bernkop-Schnürch A. Mucoadhesive hydrogels for buccal drug delivery: In vitro-in vivo correlation study. Eur J Pharm Biopharm. 2019; 142:498-505. doi: 10.1016/j.ejpb.2019.07.019.
50.    Annapurna Uppala, Naga Swapna V, Neelima Devi R, Glory Sheren G, Kishore Kumar B. Research J. Pharm. and Tech. 8(9): Sept, 2015; 8(9): 1269-1275. doi: 10.5958/0974-360X.2015.00230.9
51.    Zeng N, Seguin J, Destruel PL, Dumortier G, Maury M, Dhotel H, et al. Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: In vitro and in vivo validation of a sustained buccal drug delivery. Int J Pharm. 2017;534(1–2): 128-135. Doi:10.1016/j.ijpharm.2017.09.073
52.    Shirvan AR, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J. 2019;119:541-550.DOI: 10.1016/j.eurpolymj.2019.07.010
53.    Wróblewska M, Szymańska E, Szekalska M, Winnicka K. Different types of gel carriers as metronidazole delivery systems to the oral mucosa. Polymers (Basel). 2020; 12(3):680. doi: 10.3390/polym12030680
54.    Vishal Gupta N, Shivakumar HG. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate. Daru. 2010;18(3):200-10. PMID: 22615618;  PMCID: PMC3304361.
55.    Farshforoush P, Ghanbarzadeh S, Goganian AM, Hamishehkar H. Novel metronidazole-loaded hydrogel as a gastroretentive drug delivery system. Iran Polym J (English Ed. 2017; 17(6):1285-1297. doi: 10.1208/s12249-015-0467-x.
56.    Patra CN, P. D, J S, Rao MEB. Floating Microspheres: Recent Trends in the Development of Gastroretentive Floating Drug Delivery System. Int J Pharm Sci Nanotechnol. 2011;4(1). DOI : 10.37285/ijpsn
57.    Mishra A, Sahu G, Kumar A, Patel D, Rathore G et al. Underlining the pharmaceutical aspects associated with the development of pH responsive hydrogel. Research J. Pharm. and Tech. 2017; 10(4): 1261-1268. doi: 10.5958/0974-360X.2017.00224.4
58.    Sarfraz RM, Akram MR, Ali MR, Mahmood A, Khan MU, Ahmad H, et al. Development and in-vitro evaluation of ph responsive polymeric nano hydrogel carrier system for gastro-protective delivery of naproxen sodium. Advances in Polymer Technology. 2019;2019. doi.org/10.1155/2019/6090965
59.    Iwanaga K, Sumizawa T, Miyazaki M, Kakemi M. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds. Int J Pharm. 2010;388(1–2):123-8 DOI: 10.1016/j.ijpharm.2009.12.045
60.    Chavda H, Modhia I, Mehta A, Patel R, Patel C. Development of bioadhesive chitosan superporous hydrogel composite particles based intestinal drug delivery system. Biomed Res Int. 2013;2013. doi.org/10.1155/2013/563651
61.    Zhai J, Mantaj J, Vllasaliu D. Ascorbyl palmitate hydrogel for local, intestinal delivery of macromolecules. Pharmaceutics. 2018;10(4): 188. doi.org/10.3390/pharmaceutics10040188
62.    Martin B, Garrait G, Beyssac E, Goudouneche D, Perez E, Franceschi S. Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds. Pharm Res. 2020; 37(6):92. doi: 10.1007/s11095-020-02808-w.
63.    Iwanaga K, Kawai M, Miyazaki M, Kakemi M. Application of organogels as oral controlled release formulations of hydrophilic drugs. Int J Pharm. 2012;436(1–2) :869-72. doi: 10.1016/j.ijpharm.2012.06.041.
64.    Zhang S, Ermann J, Succi MD, Zhou A, Hamilton MJ, Cao B, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med. 2015; 7(300):300ra128. doi: 10.1126/scitranslmed.aaa5657.
65.    Minhas MU, Ahmad M, Anwar J, Khan S. Synthesis and Characterization of Biodegradable Hydrogels for Oral Delivery of 5-Fluorouracil Targeted to Colon: Screening with Preliminary In Vivo Studies. Adv Polym Technol. 2018;37(1). doi.org/10.1002/adv.21659
66.    Ma Z, Ma R, Wang X, Gao J, Zheng Y, Sun Z. Enzyme and PH responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. Eur Polym J. 2019;118. DOI: 10.1016/j.eurpolymj.2019.05.017
67.    El-Hag Ali A, AlArifi A. Characterization and in vitro evaluation of starch-based hydrogels as carriers for colon specific drug delivery systems. Carbohydr Polym. 2009;78(4). DOI: 10.1016/j.carbpol.2009.06.009
68.    Khotimchenko M. Pectin polymers for colon-targeted antitumor drug delivery. Vol. 158, International Journal of Biological Macromolecules. 2020. S0141-8130(20)33147-0. doi: 10.1016/j.ijbiomac.2020.05.002
69.    Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci. 2019; 536:224-234. doi: 10.1016/j.jcis.2018.10.056.
70.    Xu J, Tam M, Samaei S, Lerouge S, Barralet J, Stevenson MM, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017; 48:247-257. doi: 10.1016/j.actbio.2016.10.026.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available