Author(s): Devi Rianti, Wahyudi Kristanto, Herlina Damayanti, Tansza S. Putri, Aristika Dinaryanti, Ardiyansyah Syahrom, Anita Yuliati

Email(s): anita-y@fkg.unair.ac.id , ardiyans@gmail.com

DOI: 10.52711/0974-360X.2022.00380   

Address: Devi Rianti1, Wahyudi Kristanto2, Herlina Damayanti2, Tansza S. Putri1, Aristika Dinaryanti3, Ardiyansyah Syahrom4*, Anita Yuliati1*
1Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Surabaya 60132, Indonesia.
2Balai Besar Keramik Indonesia, Jl Jend. Ahmad Yani No 392, Bandung 40272, Indonesia.
3Stem Cell Research and Development Center, Institute of Tropical Disease - Airlangga University Gd. Lembaga Penyakit Tropis Lt.1, Kampus C Universitas Airlangga Jln. Mulyorejo Surabaya 60115, Indonesia.
4Medical Devices and Technology Centre (MEDITEC), Institute of Human Centered and Engineering (iHumEn), Universiti Teknologi, Malaysia, 81310 UTM Skudai, Johor, Malaysia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Background: Limestone primarily consists of CaCO3 (calcium carbonate), which have a similarity to one of human bone component, hydroxyapatite (HA), an element of apatite group (Ca10(PO4)6(OH)2). There were several setbacks in the use of artificial hydroxyapatite in the bone repair process; one of them was its relatively higher crystallinity level compared to those of human bone apatite. The addition of carbonate element to hydroxyapatite could improve its characteristics, such as increasing the solubility, decreasing the crystallinity, and changing the morphology of the crystal. That caused carbonate hydroxyapatite is preferable to help in the bone repair process. Aims: This study aimed to find the effect of limestone-based CHA on viability and proliferation of hUMSCs, thus discovering the potential of CHA as a bone graft biomaterial candidate derived from limestone. Methods: This study used FTIR, EDX, and XRD assays to CHA powder sample derived from limestone found in Padalarang and Cirebon extracted by BBK. Two grams of the sample were placed in the sample holder and examined by computer software. EDX assay was conducted three times in three different points, and the means were recorded. In the XRD assay, a carbon tip was put to the sample holder to allow sample attachment. The recorded data was compared to JCPDS data. Toxicity and proliferation examination of CHA were conducted through MTT assay in human umbilical cord mesenchymal stem cell (hUCMSC) cell lines with four different doses: 50µg/ml, 25µg/ml, 12,5µg/ml, and 6,25µg/ml. Results: Limestone-based CA has hydroxyl (OH-), phosphate (PO42-), and carbonate (CO32-) functional groups. It has crystal particle formation and consists of O, Ca, and P elements. The result of the MTT assay showed limestone-based CHA is not toxic in all concentrations and has the proliferative ability. There were significant differences between the control and treatment groups. Conclusion: CHA has OH-, PO42-, and CO32- function group. It has crystal particle formation and O, Ca, and P elements as its composition, with a Ca/P ratio of 1,67. It shows no toxicity to hUCMSC in all doses and has the ability to stimulate hUCMSC proliferation.


Cite this article:
Devi Rianti, Wahyudi Kristanto, Herlina Damayanti, Tansza S. Putri, Aristika Dinaryanti, Ardiyansyah Syahrom, Anita Yuliati. The Characteristics and Potency of Limestone-based carbonate hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Research Journal of Pharmacy and Technology. 2022; 15(5):2285-2. doi: 10.52711/0974-360X.2022.00380

Cite(Electronic):
Devi Rianti, Wahyudi Kristanto, Herlina Damayanti, Tansza S. Putri, Aristika Dinaryanti, Ardiyansyah Syahrom, Anita Yuliati. The Characteristics and Potency of Limestone-based carbonate hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Research Journal of Pharmacy and Technology. 2022; 15(5):2285-2. doi: 10.52711/0974-360X.2022.00380   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-5-62


REFERENCES:
1.     Kunert-Keil C, Gredes T, Gedrange T. Biomaterials Applicable for Alveolar Sockets Preservation: In Vivo and In Vitro Studies. In: Turkyilmaz I, editor. Implant Dentistry - The Most Promising Discipline of Dentistry. Shanghai: InTech; 2011; pp. 17–52.
2.     Alex Jahangir BA, Nunley RM, Mehta S, Sharan A, Washington Health Policy Fellows T. Bone-graft substitutes in orthopaedic surgery. AAOS Now 2008:5–9.
3.     Nugraha AP, Rezkita F, Puspitaningrum S, Luthfimaidah MS, Narmada B, Prahasanti C, et al. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Research Journal of Pharmacy and Technology 2020; 13:2502–6.
4.     Amini AR, Adams DJ, Laurencin CT, Nukavarapu SP. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Engineering - Part A 2012; 18:1376–88. doi: 10.1089/ten.tea.2011.0076.
5.     Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B 2014; 2:3161–84. doi: 10.1039/c4tb00027g.
6.     Kosachan N, Jaroenworaluck A, Jiemsirilers S, Jinawath S, Stevens R. Hydroxyapatite nanoparticles formed under a wet mechanochemical method. Journal of Biomedical Materials Research - Part B Applied Biomaterials 2017; 105:679–88. doi: 10.1002/jbm.b.33590.
7.     Radhika G, Reddy P, Venkatesh P, Reddy R. An overview on regenerative medicine. Research Journal of Pharmacy and Technology 2010; 3:727–8.
8.     Linhart W, Peters F, Lehmann W, Schwarz K, Schilling A, Amling M, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001; 54:162–71. doi: 10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3.
9.     Ana ID, Matsuya S, Ishikawa K. Engineering of Carbonate Apatite Bone Substitute Based on Composition-Transformation of Gypsum and Calcium Hydroxide. Engineering 2010; 2:344–52. doi: 10.4236/eng.2010.25045.
10.     Anderson J. Biocompatibility and the Relationship to Standards: Meaning and Scope of Biomaterials Testing. In: Ducheyne P, Kirkpatrick KEH, Hutmacher DW, Grainger DW, Kirkpatrick CJ, editors. Comprehensive Biomaterials. Oxford: Elsevier Science; 2017; pp. 7–29.
11.     Dewi AH, Ana ID. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon 2018; 4:1–30. doi: 10.1016/j.heliyon.2018.e00884.
12.     Ibrahim MS, El-Wassefy NA, Farahat DS. Biocompatibility of dental biomaterials. In: Biomaterials for Oral and Dental Tissue Engineering. Elsevier Inc.; 2017; pp. 117–40.
13.     Duya P, Bian Y, Chu X, Zhang Y. Stem cells for reprogramming: Could hUMSCs be a better choice? Cytotechnology 2013; 65:335–45. doi: 10.1007/s10616-012-9489-3.
14.     Wahyudi K, Edwin F, Sofyaningsih N. Sintesis dan Karakterisasi Bone Ash Sintetik dari Bahan Alam. Jurnal Keramik dan Gelas Indonesia 2016; 25:46–58.
15.     Sriram K, Vishnupriya V, Gayathri R. Review on the role of Nanotechnology in Dentistry and Medicine. Research Journal of Pharmacy and Technology 2016; 9:1249.
16.     Munasir M, Triwikantoro T, Zainuri M, Darminto D. Uji XRD dan XRF pada Bahan Mineral (Batuan dan Pasir) Sebagai Sumber Material Cerdas (CaCO3 dan SiO2). Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 2012; 2:20–9. doi: 10.26740/jpfa.v2n1.p20-29.
17.     Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology 2013; 65:819–27. doi: 10.1007/s10616-012-9528-0.
18.     Rantam FA. Stem Cell Mesenchymal, Hematopoetik, Dan Model Aplikasi. 2nd ed. Surabaya: Airlangga University Press. 2014.
19.     Chen X, Zhang ZY, Zhou H, Zhou GW. Characterization of mesenchymal stem cells under the stimulation of Toll-like receptor agonists. Development Growth and Differentiation 2014; 56:233–44. doi: 10.1111/dgd.12124.
20.     Yuliati A, Kartikasari N, Munadziroh E, Rianti D. The profile of crosslinked bovine hydroxyapatite gelatin chitosan scaffolds with 0.25% glutaraldehyde. Journal of International Dental and Medical Research 2017; 10:151–5.
21.     Patyar S. Role of Stem Cells in treatment of different Diseases. Research Journal of Pharmacy and Technology 2018; 11:3667–78.
22.     Azeem S, Raj S, Kajal K, Thiagarajan P. Umbilical Cord Stem Cells: A Review. Research Journal of Pharmacy and Technology 2018; 11:2709–14.
23.     Dubey N, Dubey N, Mehta RS, Saluja AK, Jain DK. Preparation and Physico-chemical Characterization of Kushta-e-sadaf, A Traditional Unani Formulation. Research Journal of Pharmacy and Technology 2008; 1:182–6.
24.     Kangralkar VA, Kulkarni AR. In Vitro Cytotoxic Activity of Alcoholic Extract of Aristolochia indica. Research Journal of Pharmacy and Technology 2013; 6:8.
25.     Singh MK, Prathapan A, Nagori K, Ishwarya S, Raghu KG. Cytotoxic and Antimicrobial Activity of Methanolic Extract of Boerhaavia diffusa L. Research Journal of Pharmacy and Technology 2010; 3:1061–3.
26.     Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Chichester: John Wiley & Sons, Ltd. 2005.
27.     van Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. In: Clifton NJ, editor. Methods in Molecular Biology. 731. Methods Mol Biol; 2011; pp. 237–45.
28.     Siswanto D, Aminatun I, Astuti SD. Sintesis Hidroksiapatit Dari Tulang Sotong Untuk Aplikasi Bone Repair. Universitas Airlangga. 2010.
29.     Kumala S, Septisetyani EP, Meiyanto E. Fraksi n-butanolik kapang endofit Buah Makasar meningkatkan efek apoptosis doxorubusin pada sel MCF-7. Majalah Farmasi Indonesia 2009; 20:42–7.
30.     Momin MAM, Rashid MM, Urmi KF, Rana MS. Phytochemical Screening and Investigation of Antioxidant and Cytotoxicity Potential of different extracts of selected Medicinal Plants of Bangladesh. Research Journal of Pharmacy and Technology 2013; 6:1042.
31.     Chauhan R, D’Souza HL, Shabnam RS, Abraham J. Phytochemical and cytotoxicity analysis of seeds and leaves of Adenanthera pavonina. Research Journal of Pharmacy and Technology 2015; 8:198–203.
32.     Terzioğlu P, Öğüt H, Kalemtaş A. Natural calcium phosphates from fish bones and their potential biomedical applications. Materials Science and Engineering C 2018; 91:899–911. doi: 10.1016/j.msec.2018.06.010.
33.     Telli C, Serper A, Dogan AL, Guc D. Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. Journal of Endodontics 1999; 25:811–3. doi: 10.1016/S0099-2399(99)80303-3.
34.     Borowiec AS, Bidaux G, Pigat N, Goffin V, Bernichtein S, Capiod T. Calcium channels, external calcium concentration and cell proliferation. European Journal of Pharmacology 2014; 739:19–25. doi: 10.1016/j.ejphar.2013.10.072.
35.     Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M. Fibronectin activity on substrates with controlled - OH density. Journal of Biomedical Materials Research - Part A 2010; 92:322–31. doi: 10.1002/jbm.a.32374.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available