Author(s): Munawaroh Fitriah, Betty Agustina Tambunan, Hartono Kahar, Jusak Nugraha, Fauqa Arinil Aulia, Aryati, Resti Yudhawati, Sudarsono, Damayanti Tinduh, Cita Rosita Sigit Prakoeswa, Yetti Hernaningsih

Email(s): fitriah.munawaroh@gmail.com

DOI: 10.52711/0974-360X.2022.00365   

Address: Munawaroh Fitriah1*, Betty Agustina Tambunan1, Hartono Kahar1, Jusak Nugraha1, Fauqa Arinil Aulia1, Aryati1, Resti Yudhawati2, Sudarsono2, Damayanti Tinduh3, Cita Rosita Sigit Prakoeswa3, Yetti Hernaningsih1
1Department of Clinical Pathology, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
2Department of Pulmonology and Respiratory Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
3Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
The aim of the research is to analyze the differences in the subset of T lymphocytes and NK cells at various degrees of disease severity in order to be used in stratification of patients’ management and to predict outcomes for optimal treatment. The study sample of 123 patients with confirmed COVID-19 was classified based on the degree of severity: 50 patients with mild severity, 34 patients with moderate severity and 39 patients with severe to critical severity who were subjected to complete blood count and T lymphocyte subsets (CD3, CD4, CD8) and NK cells with Flowcytometry. There were significant differences in the number of CD 3 cells (p=0.000), CD4 (p=0.000), CD8 (p=0.000), and NK cells (p=0.000) in the three groups. In the severe to critical group there was a decrease in lymphocytes accompanied by decrease of the number of CD3, CD4, CD8 and NK cells as well as an increase in WBC and neutrophils. Based on the outcome, there were significant differences in the number of CD 3 cells (p=0.000), CD4 (p=0.001), CD8 (p=0.000), and NK cells (p=0.001) between the Discharged and death groups. The decrease in the number of CD3, CD4, CD8 and NK cells indicates a relationship between changes in lymphocyte subsets and the pathogenesis of SARS-CoV-2, namely immune system disorders such as SARS infection. Increased of WBC with a decrease in CD3, CD4, CD8 and NK cell counts are associated with poor patient outcome. A significant decrease in the number of CD3, CD4, CD8 and NK cells in COVID-19 patients with severe to critical and moderate symptoms compared to mild groups and associated with poor patient clinical outcome.


Cite this article:
Munawaroh Fitriah, Betty Agustina Tambunan, Hartono Kahar, Jusak Nugraha, Fauqa Arinil Aulia, Aryati, Resti Yudhawati, Sudarsono, Damayanti Tinduh, Cita Rosita Sigit Prakoeswa, Yetti Hernaningsih. Characteristics of Natural Killer (NK) Cell and T Lymphocyte in COVID-19 patients in Surabaya, Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(5):2198-3. doi: 10.52711/0974-360X.2022.00365

Cite(Electronic):
Munawaroh Fitriah, Betty Agustina Tambunan, Hartono Kahar, Jusak Nugraha, Fauqa Arinil Aulia, Aryati, Resti Yudhawati, Sudarsono, Damayanti Tinduh, Cita Rosita Sigit Prakoeswa, Yetti Hernaningsih. Characteristics of Natural Killer (NK) Cell and T Lymphocyte in COVID-19 patients in Surabaya, Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(5):2198-3. doi: 10.52711/0974-360X.2022.00365   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-5-47


REFERENCES:
1.    Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 2020 Mar 15;16(10):1678-1685. DOI: 10.7150/ijbs.45053
2.    Hasan A, Al-Ozairi E, Al-Baqsumi Z, Ahmad R, Al-Mulla F. Cellular and Humoral Immune Responses in Covid-19 and Immunotherapeutic Approaches. Immunotargets Ther. 2021;10:63-85
3.    Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, et.al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020 Sep 1;130(9):4694-4703. DOI: 10.1172/JCI138554.
4.    Deng Z, Zhang M, Zhu T, Zhili N, Liu Z, Xiang R, et.al. Dynamic changes in peripheral blood lymphocyte subsets in adult patients with COVID-19. Int J Infect Dis. 2020 Sep;98:353-358. DOI: 10.1016/j.ijid.2020.07.003.
5.    Masselli E, Vaccarezza M, Carubbi C, Pozzi G, Presta V, Mirandola P, et.al. NK cells: A double edge sword against SARS-CoV-2. Adv Biol Regul. 2020 Aug;77:100737. DOI: 10.1016/j.jbior.2020.100737.
6.    Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011 Feb;30(1):16-34. DOI: 10.3109/08830185.2010.529976.
7.    Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018 Sep 12;14(Suppl 2):49. DOI: 10.1186/s13223-018-0278-1.
8.    Uppal SS, Verma S, Dhot PS. Normal values of CD4 and CD8 lymphocyte subsets in healthy indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry B Clin Cytom. 2003 Mar;52(1):32-6. doi: 10.1002/cyto.b.10011.  
9.    Wong WS, Lo AW, Siu LP, Leung JN, Tu SP, Tai SW, et.al. Reference ranges for lymphocyte subsets among healthy Hong Kong Chinese adults by single-platform flow cytometry. Clin Vaccine Immunol. 2013 Apr;20(4):602-6. doi: 10.1128/CVI.00476-12.
10.    Yaman A, Cetiner S, Kibar F, Taşova Y, Seydaoğlu G, Dündar IH. Reference ranges of lymphocyte subsets of healthy adults in Turkey. Med Princ Pract. 2005 May-Jun;14(3):189-93. doi: 10.1159/000084638.
11.    Chan MH, Wong VW, Wong CK, Chan PK, Chu CM, Hui DS, Suen MW, Sung JJ, Chung SS, Lam CW. Serum LD1 isoenzyme and blood lymphocyte subsets as prognostic indicators for severe acute respiratory syndrome. J Intern Med. 2004 Apr;255(4):512-8. doi: 10.1111/j.1365-2796.2004.01323.x.
12.    Su R, Li Z., Wang Y., Liu Y., Zheng X., Gao C., Li X., Wang C. Imbalance between Th17 and regulatory T cells in patients with systemic lupus erythematosus combined EBV/CMV viraemia. Clin Exp Rheumatol. 2020; 38(5):864-873.
13.    Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, Song S, Ma Z, Mo P, Zhang Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020 May 11;221(11):1762-1769. doi: 10.1093/infdis/jiaa150.
14.    Hu D, Lou X, Meng N, Li Z, Teng Y, Zou Y, Wang F. Influence of age and gender on the epidemic of COVID-19 : Evidence from 177 countries and territories-an exploratory, ecological study. Wien Klin Wochenschr. 2021 Apr;133(7-8):321-330.
15.    Dörre A, Doblhammer G. The Effect of Gender on COVID-19 Infections and Mortality in Germany: Insights from Age- and Sex-Specific Modelling of Contact Rates, Infections, and Deaths. Research Square; 2020.
16.    Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, Guo GY, Du J, Zheng CL, Zhu Q, Hu M, Li XY, Peng P, Shi HZ. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020 May 7;55(5):2000524. doi: 10.1111/bjh.16659.
17.    Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. British Journal of Haematology. 2020; 189(3): 428-437.
18.    Li T, Qiu Z, Zhang L, et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 2004; 189:648–51.
19.    Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et.al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020 May 1;130(5):2620-2629. doi: 10.1172/JCI137244.
20.    Jiang M, Guo Y, Luo Q, Huang Z, Zhao R, Liu S, Le A, Li J, Wan L. T-Cell Subset Counts in Peripheral Blood Can Be Used as Discriminatory Biomarkers for Diagnosis and Severity Prediction of Coronavirus Disease 2019. J Infect Dis. 2020 Jun 29;222(2):198-202. doi: 10.1093/infdis/jiaa252.
21.    Van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci. 2020 Sep 1;21(17):6351. doi: 10.3390/ijms21176351.
22.    Schuster IS, Coudert JD, Andoniou CE, Degli-Esposti MA. "Natural Regulators": NK Cells as Modulators of T Cell Immunity. Front Immunol. 2016 Jun 14;7:235. doi: 10.3389/fimmu.2016.00235.
23.    Joshua D.B., Yang Y. Natural killer cell responses to viral infection. J Innate Immun. 2011; 3(3):274-279.
24.    He Z, Zhao C, Dong Q, Zhuang H, Song S, Peng G, et.al. Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int J Infect Dis. 2005 Nov;9(6):323-30. doi: 10.1016/j.ijid.2004.07.014.
25.    National Research Project for SARS, Beijing Group. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome. Am J Clin Pathol. 2004 Apr;121(4):507-11. doi: 10.1309/WPK7-Y2XK-NF4C-BF3R.
26.    Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020 May;17(5):533-535. doi: 10.1038/s41423-020-0402-2
27.    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
28.    Guihot A, Litvinova E, Autran B, Debré P, Vieillard V. Cell-Mediated Immune Responses to COVID-19 Infection. Front Immunol. 2020 Jul 3;11:1662. doi: 10.3389/fimmu.2020.01662.
29.    Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005 Aug 1;202(3):415-24. doi: 10.1084/jem.20050828.
30.    Assiri A., Al-Tawfiq J.A., Al-Rabeeah A.A., Al-Rabiah F.A., Al-Hajjar S., Al-Barrak A., Flemban H., Al-Nassir W.N., Balkhy H.H., Al-Hakeem R.F., Makhdoom H.Q., Zumla A.I., Memish Z.A. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013 Sep;13(9):752-61. doi: 10.1016/S1473-3099(13)70204-4.
31.    Cui W, Fan Y, Wu W, Zhang F, Wang JY, Ni AP. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis. 2003 Sep 15;37(6):857-9. doi: 10.1086/378587.
32.    Liu J, Li S, Liu J, Liang B, Wang X, Li W, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS‐CoV‐2 infected patients. 2020. DOI: 10.1101/2020.02.16.20023671.
33.    Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et.al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020 Sep 4;369(6508):eabc8511. doi: 10.1126/science.abc8511.
34.    Jesenak M, Brndiarova M, Urbancikova I, Rennerova Z, Vojtkova J, Bobcakova A, Ostro R, Banovcin P. Immune Parameters and COVID-19 Infection - Associations With Clinical Severity and Disease Prognosis. Front Cell Infect Microbiol. 2020 Jun 30;10:364. doi: 10.3389/fcimb.2020.00364
35.    Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020 May 1;11:827. doi: 10.3389/fimmu.2020.00827.
36.    Ng CT, Snell LM, Brooks DG, Oldstone MB. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe. 2013 Jun 12;13(6):652-64. doi: 10.1016/j.chom.2013.05.014.
37.    Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev. 2019 Nov;292(1):149-163. doi: 10.1111/imr.12823.
38.    Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et.al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X.
39.    Zhou Y., Fu B., Zheng X, Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020.
40.    Wong RS, Wu A, To KF, Lee N, Lam CW, Wong CK, Chan PK, Ng MH, Yu LM, Hui DS, Tam JS, Cheng G, Sung JJ. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003 Jun 21;326(7403):1358-62. doi: 10.1136/bmj.326.7403.1358.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available