Author(s): Jola Rahmahani, Tetri Regilya Fatimah, Anastasia Hanny Irawan, Naimah Putri, Eryk Hendrianto, Fedik Abdul Rantam

Email(s): jola_rahmahani@yahoo.co.id

DOI: 10.52711/0974-360X.2022.00340   

Address: Jola Rahmahani1*, Tetri Regilya Fatimah2, Anastasia Hanny Irawan2, Naimah Putri3, Eryk Hendrianto4, Fedik Abdul Rantam1,4
1Laboratory of Virology and Immunology, Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, East Java, Indonesia, 60115.
2Bachelor of Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga University, East Java, Indonesia, 60115.
3Doctoral Degree of Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, East Java, Indonesia, 60115.
4Stem Cell Research and Development Center, Airlangga University, East Java, Indonesia, 60115.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Poultry farm is important commodity in Indonesia. It provides protein source as Indonesian consume varies kind of its product such as meats (chicken, duck and quail) and eggs. In Indonesia, rearing activities were differentiated into three types such as extensive traditional system, semi-intensive system, and intensive system. All these systems have same problem relate to outbreak of viral disease. One of viral disease causes annual outbreak is Newcastle Disease. It is caused by infection of Avian Paramyxovirus serotype 1. It infects varies avian species such as pigeons, ostrich, water fowl, chicken, and cockatoo. Control such as vaccination has been conducted but it could not protect the poultry from Newcastle Disease Virus (NDV) infection. It is noted that the protectivity of seed vaccine is influenced by the epitopes generates various protectivity level of the vaccination program. Sub-unit vaccine could become the best choice to protect NDV infection. Molecular analyses were conducted to obtain B cell epitopes which could induce immune system safely. Sample of pigeons (Columba livia) were collected from live bird market in Surabaya. The collected sample showed clinical signs such as respiratory disturbance, limping, loss of appetite and subclinical enteric disturbance/diarrhea. Two out of four samples were serologically confirmed to be infected with NDV (Pigeon/Surabaya/2019/01 and Pigeon/Surabaya/2019/03). Molecular approach was conducted to obtain the nucleotide sequence of the samples. The sequence was employed to epitope analyses by using Kolaskar-Tongaonkar antigenicity and Emini surface accessibility softwares. Obtained epitopes were analyzed using Vaxijen, Allertop, and ToxinPred to confirm that the epitopes are safely to be applied. Peptides were obtained from NDV infecting pigeons were noted has possibility to become seed vaccine candidate. Several peptides were obtained from Pigeon/Surabaya/2019/01 and Pigeon/Surabaya/2019/03; SWVYIHLLSTF, CTNVCLSEIQLLHSFA, VRPCMVIVRL, NLTGRKRRTVG and SDREYSQAIAR passed the in-silico screenings. These epitopes are possibly to be used as sub-unit vaccine to eradicate Newcastle Disease Virus.


Cite this article:
Jola Rahmahani, Tetri Regilya Fatimah, Anastasia Hanny Irawan, Naimah Putri, Eryk Hendrianto, Fedik Abdul Rantam. Introducing B Cell Epitopes of Newcastle Disease Virus Obtained from Domestic Pigeons (Columba livia domestica) as Sub-Unit Vaccine Candidate to Eradicate Newcastle Disease Virus in Poultry. Research Journal of Pharmacy and Technology. 2022; 15(5):2059-4. doi: 10.52711/0974-360X.2022.00340

Cite(Electronic):
Jola Rahmahani, Tetri Regilya Fatimah, Anastasia Hanny Irawan, Naimah Putri, Eryk Hendrianto, Fedik Abdul Rantam. Introducing B Cell Epitopes of Newcastle Disease Virus Obtained from Domestic Pigeons (Columba livia domestica) as Sub-Unit Vaccine Candidate to Eradicate Newcastle Disease Virus in Poultry. Research Journal of Pharmacy and Technology. 2022; 15(5):2059-4. doi: 10.52711/0974-360X.2022.00340   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-5-22


REFERENCE:
1.    Hidayat C. Asmarasari SA. Native chicken production in Indonesia: A Review. Indonesian Journal of Animal Science 2015; 17(1):1–11.
2.    Ray A. Pradhan RK. Poultry farming-an overview. Research Journal of Science and Technology 2011; 3(3):129–136.
3.    Hartawan R. Luh N. Indi P. Runting-stunting syndrome in Sukabumi and Tangerang. Indonesian Journal of Veterinary Sciences 2017; 11(2):65–69.
4.    OIE. Diseases, infections and infestations listed by the OIE. Terrestrial Animal Health Code 2018; 1–4.
5.    Cook JKA. Jackwood M. Jones RC. The long view: 40 years of infectious bronchitis research. Avian Pathology 2012; 41(3):239–250. https://doi.org/10.1080/03079457.2012.680432
6.    Daniels P. Wiyono A. Sawitri E. Poermadjaja B. Sims LD. H5N1 highly pathogenic avian influenza in Indonesia: Retrospective considerations. Current Topics in Microbiology and Immunology 2013; 365:171–184. https://doi.org/10.1007/82_2012_265
7.    Miller PJ. Haddas R. Simanov L. Lublin A. Rehmani SF. Wajid A. Bibi T et al. (2015). Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features. Infection, genetics and evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in infecTious Diseases 2015; 29:216–229. https://doi.org/10.1016/j.meegid.2014.10.032
8.    Krishnamurthy S. Samal SK. Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence. The Journal of General Virology 1998; 79(Pt 10): 2419–2424.
9.    Hussein MA. Khammas EJ. Isolation and identification of avian Newcastle disease in poultry from Karbala City, Iraq. Research Journal of Pharmacy and Technology 2019; 12(5):2229. https://doi.org/10.5958/0974-360x.2019.00371.8
10.    Putri N. Ernawati R. Suwarno. Rahmahani J. Rantam F. Epitope prediction from genes encoding F protein of Newcastle disease virus (NDV) isolates swan (Cygnus olor) for vaccine development to prevent infectious disease. Advances in Health Sciences Research 2020; 19:94–97. https://doi.org/10.2991/isessah-19.2019.26
11.    Dortmans JCFM. Rottier PJM. Koch G. Peeters BPH. The viral replication complex is associated with the virulence of Newcastle disease virus. Journal of Virology 2010; 84(19):10113–10120. https://doi.org/10.1128/JVI.00097-10
12.    Kim S. Wanasen N. Paldurai A. Xiao S. Collins PL. Samal SK. Newcastle disease virus fusion protein is the major contributor to protective immunity of genotype-matched vaccine. PloS one 2013; 8(8):1–10. https://doi.org/10.1371/journal.pone.0074022
13.    Smith EC. Popa A. Chang A. Masante C. Dutch RE. Viral entry mechanisms: The increasing diversity of paramyxovirus entry. The FEBS journal 2009; 276(24):7217–7227. https://doi.org/10.1111/j.1742-4658.2009.07401.x
14.    Gogoi P. Ganar K. Kumar S. Avian paramyxovirus: A brief review. Transboundary and emerging diseases 2017; 64(1):53–67. https://doi.org/10.1111/tbed.12355
15.    Xiao S. Paldurai A. Nayak B. Samuel A. Bharoto EE. Prajitno TY. Collins PL et al. Complete genome sequences of Newcastle disease virus strains circulating in chicken populations of Indonesia. Journal of Virology 2012; 86(10):5969–5970. https://doi.org/10.1128/JVI.00546-12
16.    Ansori ANM. Kharisma VD. Characterization of Newcastle disease virus in Southeast Asia and East Asia: Fusion protein gene. EKSAKTA: Journal Ilmu-Ilmu MIPA 2020; 20(1):14–20. https://doi.org/10.20885/eksakta.vol1.iss1.art3
17.    Putri DD. Handharyani E. Soejoedono RD. Setiyono A. Mayasari NLPI. Poetri ON. Pathotypic characterization of Newcastle disease virus isolated from vaccinated chicken in West Java, Indonesia. Veterinary World 2017; 10(4):438–444. https://doi.org/10.14202/vetworld.2017.438-444
18.    Emini EA. Hughes JV. Perlow DS. Boger J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology 1985; 55(3):836–839. https://doi.org/10.1128/jvi.55.3.836-839.1985
19.    Kolaskar AS. Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters 1990; 276(1–2):172–174. https://doi.org/10.1016/0014-5793(90)80535-Q
20.    Dimitrov I. Bangov I. Flower DR. Doytchinova I. AllerTOP v.2 - A server for in silico prediction of allergens. Journal of Molecular Modelling 2014; 20(6). https://doi.org/10.1007/s00894-014-2278-5
21.    Gupta S. Kapoor P. Chaudhary K. Gautam A. Kumar R. Raghava GPS. In silico approach for predicting toxicity of peptides and proteins. PloS One 2013; 8(9). https://doi.org/10.1371/journal.pone.0073957
22.    MacLachlan NJ. Dubovi EJ. 2017. Fenner’s veterinary virology. 5th edition. Elsevier. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom. Vol. 110. https://doi.org/10.1016/C2013-0-06921-6
23.    Pedersen JC. Senne DA. Woolcock PR. Kinde H. King DJ. Wise MG. Panigrahy B et al. Phylogenetic relationships among virulent Newcastle disease virus isolates from the 2002-2003 outbreak in California and other recent outbreaks in North America. Journal of Clinical Microbiology 2004; 42(5):2329–2334. https://doi.org/10.1128/JCM.42.5.2329-2334.2004
24.    Lindh E. Ek-Kommonen C. Vaananen V-M. Alasaari J. Vaheri A. Vapalahti O. Huovilainen A. Molecular epidemiology of outbreak-associated and wild-waterfowl-derived Newcastle disease virus strains in Finland, including a novel. Journal of Clinical Microbiology 2012; 50(11):3664–3673. https://doi.org/10.1128/JCM.01427-12
25.    Nath B. Kumar S. Emerging variant of genotype XIII Newcastle disease virus from Northeast India. Acta Tropica 2017; 172(April):64–69. https://doi.org/10.1016/j.actatropica.2017.04.018
26.    Mazumder AC. Khatun S. Nooruzzaman M. Chowdhury EH. Das PM. Isolation and identification of Newcastle disease viruses from field outbreaks in chickens and pigeons. Bangladesh Veterinarian 2012; 29:41–48.
27.    Ujvári D. Wehmann E. Kaleta EF. Werner O. Savić V. Nagy E. Czifra G et al. Phylogenetic analysis reveals extensive evolution of avian paramyxovirus type 1 strains of pigeons (Columba livia) and suggests multiple species transmission. Virus Research 2003; 96(1-2):63–73. https://doi.org/10.1016/s0168-1702(03)00173-4
28.    Meulemans G. van den Berg TP. Decaesstecker M. Boschmans M. Evolution of pigeon Newcastle disease virus strains. Avian Pathology: Journal of the W.V.P.A 2002; 31(5):515–519. https://doi.org/10.1080/0307945021000005897
29.    Berhanu A. Ideris A. Omar AR. Bejo MH. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle Disease Virus isolates in Malaysia. Virology journal 2010; 7(183):1–10. https://doi.org/10.1186/1743-422X-7-183
30.    Wang J. Liu H. Liu W. Zheng D. Zhao Y. Li Y. Wang Y et al. Genomic characterizations of six pigeon paramyxovirus type 1 viruses isolated from live bird markets in china during 2011 to 2013. PloS One 2015; 10(4):e0124261. https://doi.org/10.1371/journal.pone.0124261
31.    Nugraheni RW. Yusuf H. Setyawan D. The design of liposomal vaccine adjuvant. Asian Journal of Pharmacy and Technology 2017; 7(4):234. https://doi.org/10.5958/2231-5713.2017.00035.6
32.    Sanchez-Trincado JL. Gomez-Perosanz M. Reche PA. Fundamentals and methods for T- and B-cell epitope prediction. Journal of Immunology Research 2017; 2017:2680160. https://doi.org/10.1155/2017/2680160
33.    Lo YT. Pai TW. Hsu HH. Tsai HK. Epitope and paratope region analysis. Proceeding 8th international conference on complex, intelligent and software intensive systems, CISIS 2014; 510–514. https://doi.org/10.1109/CISIS.2014.73
34.    Vartak A. Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines 2016; 4(2):1–18. https://doi.org/10.3390/vaccines4020012
35.    Clem AS. Fundamentals of vaccine immunology. Journal of Global Infectious Diseases 2011; 3(1):73–78. https://doi.org/10.4103/0974-777X.77299
36.    Simaranjit K. Kuldeep K. Herbaksh K. Triple combination antiviral therapy. Research Journal of Pharmacy and Technology 2014; 7(10):1190–1192

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available