Author(s): Akhmetova М., Nigmatullina R., Mindubaуeva F., Tykezhanova G.

Email(s): meruzhan2@mail.ru

DOI: 10.52711/0974-360X.2022.00333   

Address: Akhmetova М.1*, Nigmatullina R.2, Mindubaуeva F.3, Tykezhanova G.1
1Department of Physiology, Academician E.A. Buketov Karaganda University NLC, Karaganda 100028, Kazakhstan.
2Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia.
3Department of Morphology and Physiology, Karaganda Medical University NCJSC, Karaganda 100000, Kazakhstan.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Serotonin is a monoamine neurotransmitter and hormone that exerts its various actions by binding to the receptor membrane in cells. 5-HT2B receptors are actively involved in embryonic morphogenesis and regulate the development of the heart. 5-HT4 and 5-HT2B are involved in myocardial contractility and affect the temporal parameters of regulation. One of the main mechanisms controlling cardiac activity is also connected with the effect of catecholamines on adrenergic receptors of cardiomyocytes, which mediate the action of the sympathetic nervous system, being the main factor contributing to multiple changes in the development of myocardial cell function. In the given study, there is reliable data provided to indicate that the effect of different concentrations of adrenaline leads to a decrease in contractility of the right ventricular myocardium in 7-day-old and 14-day-old rat pups with an altered serotonin concentration, which was created by a blockade of the synthesis of serotonin and the membrane serotonin transporter in the embryonic period of ontogenesis. The total duration of myocardial contraction is decreased in experimental groups of animals. Thus, the smallest decrease in the time of contraction and relaxation in comparison with other groups is observed in 7-day-old rat pups with an excess of serotonin; in 14-day-old rat pups with a lack of serotonin. Thus, a change in the concentration of serotonin in prenatal ontogenesis can possibly affect the sensitivity of adrenergic receptors in postnatal ontogenesis.


Cite this article:
Akhmetova М., Nigmatullina R., Mindubaуeva F., Tykezhanova G. The effect of Adrenaline on the contractility of the Right Ventricular Myocardium in rat pups with altered Serotonin concentration in Ontogenesis. Research Journal of Pharmacy and Technology. 2022; 15(5):2010-6. doi: 10.52711/0974-360X.2022.00333

Cite(Electronic):
Akhmetova М., Nigmatullina R., Mindubaуeva F., Tykezhanova G. The effect of Adrenaline on the contractility of the Right Ventricular Myocardium in rat pups with altered Serotonin concentration in Ontogenesis. Research Journal of Pharmacy and Technology. 2022; 15(5):2010-6. doi: 10.52711/0974-360X.2022.00333   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-5-15


REFERENCES:
1.    Derangeon M.. Bozon V.. Defamie N.. Peineau N.. Bourmeyster N.. Sarrouilhe D.. Hervé J. 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes. Journal of Molecular and Cellular Cardiology. 2010; 48(1): 220-9. doi: 10.1016/j.yjmcc.2009.07.005 available on https://www.sciencedirect.com/science/article/abs/pii/S0022282809002776.
2.    Watts S.W.. Morrison S.F.. Davis R.P.. Barman S.M. Serotonin and blood pressure regulation. Pharmacological Reviews. 2012; 64(2): 359-88. doi: 10.1124/pr.111.004697 available on https://pharmrev.aspetjournals.org/content/64/2/359.
3.    Abbas A.C., Hamza Al-Kraity W.R., Abbas E.C. Effect antioxidant and serotonin level in the sera on type II diabetes mellitus males patients and compare with control group. Research Journal of Pharmacy and Technology. 2019; 12(5): 2453-60. doi: 10.5958/0974-360X.2019.00411.6 available on https://rjptonline.org/AbstractView.aspx?PID=2019-12-5-70.
4.    Venkatesha G., Kalaiyarasia C., Ramanathana M. Antidepressant like Effect of Gabapentin decreases the immobility time in despair animal models in mice: roll of serotonergic system in it. Research Journal of Pharmacy and Technology. 2011; 4(11): 1702-06. available on https://rjptonline.org/AbstractView.aspx?PID=2011-4-11-5.
5.    Sadykova D.I.. Nigmatullina R.R.. Aflyatumova G.N. The role of serotonergic system in cardiovascular diseases development in children. Kazan Medical Journal. 2015; 96(4): 65-9. doi: 10.17750/KMJ2015-665 available on https://kazanmedjournal.ru/kazanmedj/article/view/2270.
6.    Sadler T.W. Selective serotonin reuptake inhibitors (SSRIs) and heart defects: Potential mechanisms for the observed associations. Reproductive Toxicology. 2011; 32(4): 484-9. doi: 10.1016/j.reprotox.2011.09.004 available on https://www.sciencedirect.com/science/article/abs/pii/S0890623811003625.
7.    Nebigil C.G.. Choi D.S.. Dierich A.. Hickel P.. Le Meur M.. Messaddeq N.. et al. Serotonin 2B receptor is required for heart development. Proceedings of the National Academy of Sciences USA. 2000; 97(17): 9508-13. doi: 10.1073/pnas.97.17.9508 available on https://www.pnas.org/content/97/17/9508.
8.    Emanuilov A.I.. Masliukov P.M.. Nozdrachev A.D. The heart sympathetic innervation in the early postnatal development. Russian physiology journal named after I.M. Sechenov. 2019; 105(9): 1133-41. doi: 10.1134/S086981391909005X available on https://rusjphysiol.org/index.php/rusjphysiol/article/view/489.
9.    O'Connell T.D.. Jensen B.C.. Baker A.J.. Simpson P.C. Cardiac alpha1-adrenergic receptors: Novel aspects of expression. signaling mechanisms. physiologic function. and clinical importance. Pharmacological reviews. 2014; 66(1): 308-33. doi: 10.1124/pr.112.007203 available on https://pharmrev.aspetjournals.org/content/66/1/308.
10.    Bencivenga L.. Liccardo D.. Napolitano C.. Visaggi L.. Rengo G.. Leosco D. β-adrenergic receptor signaling and heart failure: From bench to bedside. Heart Failure Clinics. 2019; 15(3): 409-19. doi: 10.1016/j.hfc.2019.02.009 available on https://www.heartfailure.theclinics.com/article/S1551-7136(19)30020-0/fulltext.
11.    Maurer-Spurej E. Serotonin reuptake inhibitors and cardiovascular diseases: a platelet connection. Cellular and Molecular Life Sciences. 2005; 62(2): 159-70. doi: 10.1007/s00018-004-4262-1 available on https://link.springer.com/article/10.1007/s00018-004-4262-1.
12.    Taciak P.P.. Lysenko N.. Mazurek A.P. Drugs which influence serotonin transporter and serotonergic receptors: Pharmacological and clinical properties in the treatment of depression. Pharmacological Reports. 2018; 70(1): 37-46. doi: 10.1016/j.pharep.2017.07.011 available on https://link.springer.com/article/10.1016/j.pharep.2017.07.011.
13.    Bhagat V., Symbak N.B., Husain R., Mat K.C. The role of selective serotonin reuptake inhibitors and cognitive behavioral therapy in preventing relapse of Major Depressive Disorder. Research Journal of Pharmacy and Technology. 2019; 12(8): 3818-24. doi: 10.5958/0974-360X.2019.00654.1 available on https://rjptonline.org/AbstractView.aspx?PID=2019-12-8-44.
14.    Shinkar D.M., Pandya D.B., Saudagar R.B. Kleptomania: An overview. Asian Journal of Pharmacy and Technology. 2016; 6(2): 127-30. doi: 10.5958/2231-5713.2016.00017.9  available on https://ajptonline.com/AbstractView.aspx?PID=2016-6-2-9.
15.    Patel M.A., Patel C.M., Patel D.B., Anand I.S., Patel C.N. A Review on Novel Strategies for Pharmacotherapy of Depression. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(2): 153-59. available on https://rjppd.org/AbstractView.aspx?PID=2010-2-2-31.
16.    Yogita S., Kumar J.A. Effects of maternal fluoxetine treatment on behavioural despair and learned helplessness parameters of depression in the rat progeny. Research Journal of Pharmacology and Pharmacodynamics. 2016; 8(3): 106-10. doi: 10.5958/2321-5836.2016.00019.7 available on https://rjppd.org/AbstractView.aspx?PID=2016-8-3-3.
17.    Dixit N., Trivedi A., Ahirwar D. Synthesis of Citosan Nanocarrier Systems for Improving SSRI-Fluoxetine Efficacy in MDD. Research Journal of Pharmacy and Technology. 2020; 13(5): 2387-92. doi: 10.5958/0974-360X.2020.00429.1 available on https://rjptonline.org/AbstractView.aspx?PID=2020-13-5-59.
18.    Sadler T.W. Selective serotonin reuptake inhibitors (SSRIs) and heart defects: Potential mechanisms for the observed associations. Reproductive Toxicology. 2011; 32(4): 484-9. doi: 10.1016/j.reprotox.2011.09.004 available on https://www.sciencedirect.com/science/article/abs/pii/S0890623811003625.
19.    Yogita S., Kumar J.A. Effects of maternal fluoxetine treatment on anxiety parameters in the rat progeny. Research Journal of Pharmacology and Pharmacodynamics. 2017; 9(3): 137-41. doi: 10.5958/2321-5836.2017.00023.4 available on https://rjppd.org/AbstractView.aspx?PID=2017-9-3-4.
20.    Zaheer Z., Shaikh O., Thorat S., Ahmed R.Z. Development and validation of uv spectrophotometric method of fluoxetine hydrochloride in bulk and pharmaceutical formulation. Asian Journal of Research in Chemistry. 2010; 3(3): 545-8. available on https://ajrconline.org/AbstractView.aspx?PID=2010-3-3-6.
21.    Lauder J.M.. Tamir H.. Sadler T.W. Serotonin and morphogenesis. I. Sites of serotonin uptake and -binding protein immunoreactivity in the midgestation mouse embryo. Development. 1988; 102(4): 709-20. doi: 10.1242/dev.102.4.709 available on https://journals.biologists.com/dev/article/102/4/709/36064/Serotonin-and-morphogenesis-I-Sites-of-serotonin.
22.    Côté F.. Fligny C.. Fromes Y.. Mallet J.. Vodjdani G. Recent advances in understanding serotonin regulation of cardiovascular function. Trends in Molecular Medicine. 2004; 10(5): 232-8. doi: 10.1016/j.molmed.2004.03.007 available on https://www.cell.com/trends/molecular-medicine/fulltext/S1471-4914(04)00080-2.
23.    Mindubaуeva F., Niyazova Y., Nigmatullina R., Sadykova D., et al. Membrane serotonin transporter as a Biomarker of Pulmonary arterial hypertension in children with Congenital Heart Defect. Research Journal of Pharmacy and Technology. 2020; 13(5): 2435-8. doi: 10.5958/0974-360X.2020.00436.9 available on https://rjptonline.org/AbstractView.aspx?PID=2020-13-5-66.
24.    Coe B.. Weissman K.A. p-Chlorophenylalanine: a special depletor of brain serotonin. Journal of Pharmacology and Experimental Therapeutics. 1966; 154(3): 499-516. PMID: 5297133 available on https://jpet.aspetjournals.org/content/154/3/499.
25.    Jin H.. Cianchetta G.. Devasagayaraj A.. Gu K.. Marinelli B.. Samala L.. et al. Substituted 3-(4-(1.3.5-triazin-2-yl)-phenyl)-2-aminopropanoic acids as novel tryptophan hydroxylase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2009; 19(17): 5229-32. doi: 10.1016/j.bmcl.2009.07.005 https://www.sciencedirect.com/science/article/abs/pii/S0960894X09009536.
26.    Gurevich V.V.. Gurevich E.V. GPCRs and signal transducers: Interaction stoichiometry. Trends in Pharmacological Sciences. 2018; 39(7): 672-84. doi: 10.1016/j.tips.2018.04.002 available on https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(18)30075-0.
27.    Moutkine I.. Collins E.. Béchade C.. Maroteaux L. Evolutionary considerations on 5-HT2 receptors. Pharmacological Research. 2019; 140: 14-20. doi: 10.1016/j.phrs.2018.09.014 available on https://www.sciencedirect.com/science/article/abs/pii/S1043661818313252.
28.    Yavarone M.S.. Shuey D.L.. Tamir H.. Sadler T.W.. Lauder J.M. Serotonin and cardiac morphogenesis in the mouse embryo. Teratology. 1993; 47(6): 573-84. doi: 10.1002/tera.1420470609 available on https://onlinelibrary.wiley.com/doi/10.1002/tera.1420470609.
29.    Nebigil C.G.. Hickel P.. Messaddeq N.. et al. Ablation of serotonin 5-HT2B receptors in mice leads to abnormal cardiac structure and function. Circulation. 2001; 103(24): 2973-9. doi: 10.1161/01.cir.103.24.2973 available on https://www.ahajournals.org/doi/10.1161/01.CIR.103.24.2973.
30.    Brattelid T.. Qvigstad E.. Moltzau L.R.. et al. The cardiac ventricular 5-HT4 receptor is functional in late foetal development and is reactivated in heart failure. PLoS One. 2012; 7(9): e45489. doi: 10.1371/journal.pone.0045489 available on https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045489.
31.    Levy F.O.. Qvigstad E.. Krobert K.A.. Skomedal T.. Osnes J.B. Effects of serotonin in failing cardiac ventricle: signalling mechanisms and potential therapeutic implications. Neuropharmacology. 2008; 55(6): 1066-71. doi: 10.1016/j.neuropharm.2008.07.010 available on https://www.sciencedirect.com/science/article/abs/pii/S0028390808002876.
32.    Vasudevan N.T.. Mohan M.L.. Goswami S.K.. Naga S.V. Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle. 2011; 10(21): 3684-91. doi: 10.4161/cc.10.21.18042 available on https://www.tandfonline.com/doi/full/10.4161/cc.10.21.18042.
33.    Belletti A.. Landoni G.. Lomivorotov V.. Oriani A.. Ajello S. Adrenergic down regulation in critical care: Molecular mechanisms and therapeutic evidence. Journal of Cardiothoracic and Vascular Anesthesia. 2020; 34(4): 1023-41. doi: 10.1053/j.jvca.2019.10.017 available on https://www.jcvaonline.com/article/S1053-0770(19)31050-X/fulltext.
34.    Claing A.. Laporte S.A.. Caron M.G.. Lefkowitz R.J. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Progress in Neurobiology. 2002; 66(2): 61-79. doi: 10.1016/s0301-0082(01)00023-5 available on https://www.sciencedirect.com/science/article/pii/S0301008201000235.
35.    Roeske W.R.. Wildenthal K. Responsiveness to drugs and hormones in the murine model of cardiac ontogenesis. Pharmacology and Therapeutics. 1981; 14(1): 55-66. doi: 10.1016/0163-7258(81)90010-3 available on https://www.sciencedirect.com/science/article/abs/pii/0163725881900103.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available